Plasma-grating-based laser pulse compressor

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-07-30 DOI:10.1103/physreve.110.015209
G. Lehmann, K. H. Spatschek
{"title":"Plasma-grating-based laser pulse compressor","authors":"G. Lehmann, K. H. Spatschek","doi":"10.1103/physreve.110.015209","DOIUrl":null,"url":null,"abstract":"To avoid damage in high-power laser systems, a chirped plasma-based grating is proposed for compressing laser pulses that have been previously stretched and amplified. This chirped grating is generated through the interaction of chirped pump laser pulses in a plasma slab. Particle-in-cell (PIC) simulations demonstrate that the grating exists for a duration sufficient to be utilized in the final chirped pulse amplification (CPA) stage. The generation of the grating is quite flexible, as several parameters can be adjusted, such as plasma density, chirp, length, and intensity of the pump laser. To begin, the structure of the grating is analyzed in terms of ponderomotive effects of the pump laser pulses. The primary application of the chirped plasma-based grating lies in compressing laser pulses to large amplitudes and short durations after they have been stretched and amplified beforehand. The compression factor is explored in connection with potential grating parameters. Reflectivity and effective bandwidth of chirped plasma gratings are parameters to be optimized. However, the grating spectral bandwidth can only be increased at the expense of reflectivity. The PIC results are made understandable through model calculations based on coupled mode equations.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.015209","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

To avoid damage in high-power laser systems, a chirped plasma-based grating is proposed for compressing laser pulses that have been previously stretched and amplified. This chirped grating is generated through the interaction of chirped pump laser pulses in a plasma slab. Particle-in-cell (PIC) simulations demonstrate that the grating exists for a duration sufficient to be utilized in the final chirped pulse amplification (CPA) stage. The generation of the grating is quite flexible, as several parameters can be adjusted, such as plasma density, chirp, length, and intensity of the pump laser. To begin, the structure of the grating is analyzed in terms of ponderomotive effects of the pump laser pulses. The primary application of the chirped plasma-based grating lies in compressing laser pulses to large amplitudes and short durations after they have been stretched and amplified beforehand. The compression factor is explored in connection with potential grating parameters. Reflectivity and effective bandwidth of chirped plasma gratings are parameters to be optimized. However, the grating spectral bandwidth can only be increased at the expense of reflectivity. The PIC results are made understandable through model calculations based on coupled mode equations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于等离子光栅的激光脉冲压缩器
为了避免高功率激光系统中的损坏,我们提出了一种基于等离子体的啁啾光栅,用于压缩先前经过拉伸和放大的激光脉冲。这种啁啾光栅是通过等离子体板中啁啾泵浦激光脉冲的相互作用产生的。粒子入胞(PIC)模拟证明,光栅存在的时间足以在最后的啁啾脉冲放大(CPA)阶段中使用。光栅的产生非常灵活,因为有几个参数可以调整,如等离子体密度、啁啾、长度和泵浦激光器的强度。首先,从泵浦激光脉冲的思索动力效应角度分析了光栅的结构。基于啁啾等离子体的光栅的主要应用在于将事先经过拉伸和放大的激光脉冲压缩到大振幅和短持续时间。压缩系数与光栅的潜在参数有关。啁啾等离子光栅的反射率和有效带宽是需要优化的参数。然而,光栅光谱带宽的增加只能以牺牲反射率为代价。通过基于耦合模式方程的模型计算,可以理解 PIC 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1