Marcin Łobejko, Marek Winczewski, Gerardo Suárez, Robert Alicki, Michał Horodecki
{"title":"Corrections to the Hamiltonian induced by finite-strength coupling to the environment","authors":"Marcin Łobejko, Marek Winczewski, Gerardo Suárez, Robert Alicki, Michał Horodecki","doi":"10.1103/physreve.110.014144","DOIUrl":null,"url":null,"abstract":"If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the “quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force correction from reaction-coordinate approach.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.014144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the “quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force correction from reaction-coordinate approach.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.