{"title":"High glass transition temperature dopant-free hole transport material via D-A-π-A-D-strategy for perovskite solar cell","authors":"Cheng-Hui Liao, Li-Gang Yuan, Yi-Heng Zhang, Wei-Ya Zhu, Min-Chao Qin, Zhi-Bo He, Jie-Lin Huang, Hao-Lin Xiao, Zhi-Heng Li, Xin-Hui Lu, Ke-You Yan, Yuan Li","doi":"10.1007/s12598-024-02881-9","DOIUrl":null,"url":null,"abstract":"<p>Despite the great leap forward perovskite solar cells (PSCs) have achieved in power conversion efficiency, the device instability remains one of the major problems plaguing its commercialization. Dopant-free hole transport material (HTM) has been widely studied as an important strategy to improve the stability of PSCs due to its avoidance of moisture-sensitive dopants and cumbersome doping process. In this work, a series of dopant-free HTMs L1F, L2F and L3F based on D-A-π-A-D configuration were synthesized through two steps of reaction. L3F presents a high glass transition temperature of 180 °C and thermal decomposition temperature of 448 °C. Notably, electron paramagnetic resonance signals of L1F, L2F and L3F powders indicate the open-shell quinoidal diradical resonance structure in their aggregation state due to aggregation-induced radical effect. All these HTMs present higher hole mobility than dopant-free Spiro-OMeTAD, and the dopant-free L3F-based PSC device achieves the highest power conversion efficiency of 17.6% among them. In addition, due to the high hydrophobic properties of L1F, L2F and L3F, the perovskite films spin-coated with these HTMs exhibit higher humidity stability than doped Spiro-OMeTAD. These results demonstrate a promising design strategy for high glass transition temperature dopant-free hole transport material. The open-shell quinoid-radical organic semiconductors are not rational candidates for dopant-free HTMs for PSC devices.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6373 - 6383"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02881-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the great leap forward perovskite solar cells (PSCs) have achieved in power conversion efficiency, the device instability remains one of the major problems plaguing its commercialization. Dopant-free hole transport material (HTM) has been widely studied as an important strategy to improve the stability of PSCs due to its avoidance of moisture-sensitive dopants and cumbersome doping process. In this work, a series of dopant-free HTMs L1F, L2F and L3F based on D-A-π-A-D configuration were synthesized through two steps of reaction. L3F presents a high glass transition temperature of 180 °C and thermal decomposition temperature of 448 °C. Notably, electron paramagnetic resonance signals of L1F, L2F and L3F powders indicate the open-shell quinoidal diradical resonance structure in their aggregation state due to aggregation-induced radical effect. All these HTMs present higher hole mobility than dopant-free Spiro-OMeTAD, and the dopant-free L3F-based PSC device achieves the highest power conversion efficiency of 17.6% among them. In addition, due to the high hydrophobic properties of L1F, L2F and L3F, the perovskite films spin-coated with these HTMs exhibit higher humidity stability than doped Spiro-OMeTAD. These results demonstrate a promising design strategy for high glass transition temperature dopant-free hole transport material. The open-shell quinoid-radical organic semiconductors are not rational candidates for dopant-free HTMs for PSC devices.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.