Structural origin of enhanced storage energy performance and robust mechanical property in A-site disordered high-entropy ceramics

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-31 DOI:10.1007/s12598-024-02934-z
Shuai Chen, Ting Wang, Xiao-Ling Wang, Kai Li, Qing-Feng Zhu, Wei-Ping Gong, Ge Liu, Qing-Yuan Wang, Shao-Xiong Xie
{"title":"Structural origin of enhanced storage energy performance and robust mechanical property in A-site disordered high-entropy ceramics","authors":"Shuai Chen, Ting Wang, Xiao-Ling Wang, Kai Li, Qing-Feng Zhu, Wei-Ping Gong, Ge Liu, Qing-Yuan Wang, Shao-Xiong Xie","doi":"10.1007/s12598-024-02934-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>High-entropy perovskite ferroelectric materials have attracted significant attention due to their remarkably low remnant polarizations and narrow hysteresis. Thus, these materials offer high-energy density and efficiency, making them suitable for energy storage applications. Despite significant advancements in experimental research, understanding of the properties associated with structure remains incomplete. This study aims to study the structural, electric, and mechanical performances at various scales of the high-entropy (Na<sub>0.2</sub>Bi<sub>0.2</sub>Ca<sub>0.2</sub>Sr<sub>0.2</sub>Ba<sub>0.2</sub>)TiO<sub>3</sub> (NBCSB) material. The results of first-principles calculations indicated that the pseudo-intralayer distortion was obviously smaller compared to the interlayer distortion. Among the various bonds, Bi–O, Ca–O, and Na–O experienced the greatest displacement. Similarly, the hybridization between O 2p and Ti 3d states with Bi 6p states was particularly strong, affecting both the ferroelectric polarization and relaxor behavior. The NBCSB materials produced using a typical solid-state process demonstrated exceptional performance in energy storage with a recoverable density of 1.53 J·cm<sup>−3</sup> and a high efficiency of 89% when subjected to a small electric field of 120 kV·cm<sup>−1</sup>. In addition, these ceramics displayed a remarkable hardness of around 7.23 GPa. NBCSB ceramics exhibited exceptional relaxation characteristics with minimal hysteresis and low remanent polarization due to its nanoscale high dynamic polarization configuration with diverse symmetries (rhombohedral, tetragonal, and cubic) resulting from randomly dispersed A-site ions. The excellent mechanical property is related to the dislocation-blocking effect, solid solution strengthening effect, and domain boundary effect. The findings of this study offer a comprehensive and novel perspective on A-site disordered high-entropy relaxor ferroelectric ceramics.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"74 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02934-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy perovskite ferroelectric materials have attracted significant attention due to their remarkably low remnant polarizations and narrow hysteresis. Thus, these materials offer high-energy density and efficiency, making them suitable for energy storage applications. Despite significant advancements in experimental research, understanding of the properties associated with structure remains incomplete. This study aims to study the structural, electric, and mechanical performances at various scales of the high-entropy (Na0.2Bi0.2Ca0.2Sr0.2Ba0.2)TiO3 (NBCSB) material. The results of first-principles calculations indicated that the pseudo-intralayer distortion was obviously smaller compared to the interlayer distortion. Among the various bonds, Bi–O, Ca–O, and Na–O experienced the greatest displacement. Similarly, the hybridization between O 2p and Ti 3d states with Bi 6p states was particularly strong, affecting both the ferroelectric polarization and relaxor behavior. The NBCSB materials produced using a typical solid-state process demonstrated exceptional performance in energy storage with a recoverable density of 1.53 J·cm−3 and a high efficiency of 89% when subjected to a small electric field of 120 kV·cm−1. In addition, these ceramics displayed a remarkable hardness of around 7.23 GPa. NBCSB ceramics exhibited exceptional relaxation characteristics with minimal hysteresis and low remanent polarization due to its nanoscale high dynamic polarization configuration with diverse symmetries (rhombohedral, tetragonal, and cubic) resulting from randomly dispersed A-site ions. The excellent mechanical property is related to the dislocation-blocking effect, solid solution strengthening effect, and domain boundary effect. The findings of this study offer a comprehensive and novel perspective on A-site disordered high-entropy relaxor ferroelectric ceramics.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 位无序高熵陶瓷储能性能增强和机械性能稳健的结构起源
摘要高熵包晶石铁电材料因其显著的低残余极化和窄磁滞而备受关注。因此,这些材料具有高能量密度和高效率,适用于储能应用。尽管实验研究取得了重大进展,但对与结构相关的特性的了解仍不全面。本研究旨在研究高熵 (Na0.2Bi0.2Ca0.2Sr0.2Ba0.2)TiO3 (NBCSB) 材料在不同尺度下的结构、电气和机械性能。第一原理计算的结果表明,与层间畸变相比,伪层内畸变明显较小。在各种键中,Bi-O、Ca-O 和 Na-O 的位移最大。同样,O 2p 和 Ti 3d 态与 Bi 6p 态之间的杂化也特别强,对铁电极化和弛豫行为都有影响。采用典型固态工艺生产的 NBCSB 材料在储能方面表现出卓越的性能,在 120 kV-cm-1 的小电场下,其可恢复密度为 1.53 J-cm-3,效率高达 89%。此外,这些陶瓷的硬度高达 7.23 GPa。NBCSB 陶瓷表现出卓越的弛豫特性,具有最小的滞后和较低的剩电位极化,这是因为其纳米级高动态极化配置具有多种对称性(斜方体、四方体和立方体),这些对称性来自随机分散的 A 位离子。优异的力学性能与位错阻塞效应、固溶强化效应和畴界效应有关。本研究的发现为 A 位无序高熵弛豫铁电陶瓷提供了一个全面而新颖的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1