Quantum Heat Engines with Spin-Chain-Star Systems

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annalen der Physik Pub Date : 2024-07-30 DOI:10.1002/andp.202400122
M. D. Alsulami, M. Y. Abd-Rabbou
{"title":"Quantum Heat Engines with Spin-Chain-Star Systems","authors":"M. D. Alsulami,&nbsp;M. Y. Abd-Rabbou","doi":"10.1002/andp.202400122","DOIUrl":null,"url":null,"abstract":"<p>This study investigates a theoretical model of a Quantum Otto Cycle (QOC) that utilizes a working fluid spin-chain-star model. The system consists of a central atom interacting with multiple Heisenberg spin chains. Employing unitary transformations, the spin-chain-star system is transformed into a spin-star model. The work done and heat transferred for three distinct working fluid configurations: the <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mi>X</mi>\n </mrow>\n <annotation>$XX$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mi>Y</mi>\n <mi>Z</mi>\n </mrow>\n <annotation>$XYZ$</annotation>\n </semantics></math> cases are discussed. The efficiency of the heat engine is examined, and a comparative study between the efficiencies of the three configurations is presented. The study assumes two interaction scenarios for the central atom: either with a single chain (resulting in a two-qubit system after transformation) or with three Heisenberg chains. The results demonstrate that increasing the ratio between the central atom's frequency in the hot bath and the cold bath leads to an enhancement in positive work performed for the <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mi>X</mi>\n </mrow>\n <annotation>$XX$</annotation>\n </semantics></math> cases. In the <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mi>Y</mi>\n <mi>Z</mi>\n </mrow>\n <annotation>$XYZ$</annotation>\n </semantics></math> case, the magnitude of this enhancement exhibits a dependence on the system's temperature. The QOC employing the <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> configuration working fluid exhibits superior efficiency compared to the other two configurations. Moreover, increasing the central atom's relative frequency improves efficiency for all three cases.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400122","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a theoretical model of a Quantum Otto Cycle (QOC) that utilizes a working fluid spin-chain-star model. The system consists of a central atom interacting with multiple Heisenberg spin chains. Employing unitary transformations, the spin-chain-star system is transformed into a spin-star model. The work done and heat transferred for three distinct working fluid configurations: the X $X$ , X X $XX$ , and X Y Z $XYZ$ cases are discussed. The efficiency of the heat engine is examined, and a comparative study between the efficiencies of the three configurations is presented. The study assumes two interaction scenarios for the central atom: either with a single chain (resulting in a two-qubit system after transformation) or with three Heisenberg chains. The results demonstrate that increasing the ratio between the central atom's frequency in the hot bath and the cold bath leads to an enhancement in positive work performed for the X $X$ and X X $XX$ cases. In the X Y Z $XYZ$ case, the magnitude of this enhancement exhibits a dependence on the system's temperature. The QOC employing the X $X$ configuration working fluid exhibits superior efficiency compared to the other two configurations. Moreover, increasing the central atom's relative frequency improves efficiency for all three cases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带自旋链星系统的量子热机
本研究探讨了量子奥托循环(QOC)的理论模型,该模型采用了工作流体自旋链-星型模型。该系统由一个与多个海森堡自旋链相互作用的中心原子组成。通过单元变换,自旋链-星系统被转化为自旋星模型。讨论了三种不同的工作流体配置所做的功和传递的热量: 、 和 。研究了热机的效率,并对三种配置的效率进行了比较研究。研究假设中心原子有两种相互作用情况:一种是与单链相互作用(转化后形成双量子比特系统),另一种是与三个海森堡链相互作用。结果表明,增加中心原子在热浴和冷浴中的频率比,会增强两种情况下所做的正功。在情况下,这种增强的幅度与系统的温度有关。与其他两种配置相比,采用配置工作流体的 QOC 表现出更高的效率。此外,提高中心原子的相对频率可以提高所有三种情况下的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
期刊最新文献
(Ann. Phys. 12/2024) Masthead: Ann. Phys. 12/2024 (Ann. Phys. 11/2024) (Ann. Phys. 11/2024) Masthead: Ann. Phys. 11/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1