Top-Gate Indium-Tin-Oxide Power Transistors Featuring High Breakdown Voltage of 156 V

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-07-29 DOI:10.1109/LED.2024.3435428
Jiawei Xie;Yuxuan Wang;Zijie Zheng;Yuye Kang;Xuanqi Chen;Gerui Zheng;Rui Shao;Kaizhen Han;Xiao Gong
{"title":"Top-Gate Indium-Tin-Oxide Power Transistors Featuring High Breakdown Voltage of 156 V","authors":"Jiawei Xie;Yuxuan Wang;Zijie Zheng;Yuye Kang;Xuanqi Chen;Gerui Zheng;Rui Shao;Kaizhen Han;Xiao Gong","doi":"10.1109/LED.2024.3435428","DOIUrl":null,"url":null,"abstract":"In this letter, a top-gate (TG) indium-tin-oxide (ITO) power field-effect transistor (FET) with offset design is reported for the first time and carefully investigated by both simulations and experimental measurements. The electrical field distribution within devices possessing different designs were comprehensively studied by TCAD Sentaurus based simulations, which guide the device fabrication for achieving high breakdown voltage (\n<inline-formula> <tex-math>${V} _{\\text {BD}}\\text {)}$ </tex-math></inline-formula>\n. The device with \n<inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>\nm source-to-drain distance (\n<inline-formula> <tex-math>${L} _{\\text {SD}}\\text {)}$ </tex-math></inline-formula>\n not only achieves one of the best \n<inline-formula> <tex-math>${V} _{\\text {BD}}$ </tex-math></inline-formula>\n values of 156 V among all kinds of oxide semiconductor (OS) FET ever reported, but also demonstrates a Baliga’s figure-of-merit (BFoM) beyond the silicon (Si) limit. An improved specific on-state resistance (\n<inline-formula> <tex-math>${R} _{\\text {on, {sp}}}\\text {)}$ </tex-math></inline-formula>\n of 0.023 m\n<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>\ncm\n<sup>2</sup>\n together with a decent \n<inline-formula> <tex-math>${V} _{\\text {BD}}$ </tex-math></inline-formula>\n of 14 V can be obtained by scaling down the \n<inline-formula> <tex-math>${L} _{\\text {SD}}$ </tex-math></inline-formula>\n to 200 nm. Our findings highlight the great potential of ITO FET in future back-end-of-line (BEOL) compatible power applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10614198/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, a top-gate (TG) indium-tin-oxide (ITO) power field-effect transistor (FET) with offset design is reported for the first time and carefully investigated by both simulations and experimental measurements. The electrical field distribution within devices possessing different designs were comprehensively studied by TCAD Sentaurus based simulations, which guide the device fabrication for achieving high breakdown voltage ( ${V} _{\text {BD}}\text {)}$ . The device with $1~\mu $ m source-to-drain distance ( ${L} _{\text {SD}}\text {)}$ not only achieves one of the best ${V} _{\text {BD}}$ values of 156 V among all kinds of oxide semiconductor (OS) FET ever reported, but also demonstrates a Baliga’s figure-of-merit (BFoM) beyond the silicon (Si) limit. An improved specific on-state resistance ( ${R} _{\text {on, {sp}}}\text {)}$ of 0.023 m $\Omega \cdot $ cm 2 together with a decent ${V} _{\text {BD}}$ of 14 V can be obtained by scaling down the ${L} _{\text {SD}}$ to 200 nm. Our findings highlight the great potential of ITO FET in future back-end-of-line (BEOL) compatible power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有 156 V 高击穿电压的顶栅氧化铟锡功率晶体管
本文首次报道了一种采用偏移设计的顶栅 (TG) 氧化铟锡(ITO)功率场效应晶体管(FET),并通过模拟和实验测量对其进行了仔细研究。通过基于 TCAD Sentaurus 的仿真全面研究了不同设计器件内的电场分布,从而指导器件制造以实现高击穿电压(${V} _{text {BD}}\text {)}$。具有 1~\mu $ m 源漏距离(${L} _{\text {SD}}\text {)}$ 的器件不仅实现了最佳的 ${V} _{\text {BD}} (${V} _{\text {SD}}\text {)}$ 之一,而且还实现了更高的击穿电压。_{text {BD}}$ 值达到 156 V,是迄今所报道的各种氧化物半导体(OS)场效应晶体管中的最佳值之一,而且还显示出超越硅(Si)极限的巴利加功勋值(Baliga's figure-of-merit, BFoM)。改进后的比导通电阻(${R} _{\text {on, {sp}}}\text {)}$为 0.023 m $\Omega \cdot $ cm2,同时还具有不错的 ${V} 。通过缩减 ${L} 可以获得 14 V 的 _{text {BD}}$ 值。{text{SD}}$到 200 nm。我们的研究结果凸显了 ITO FET 在未来兼容后端 (BEOL) 功率应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1