Ultra-Low Gate Leakage Current and Enhanced Gate Reliability in p-GaN HEMT With AlN/GaN/AlN Double Barriers Cap Layer

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-07-29 DOI:10.1109/LED.2024.3435501
Kai Liu;Chong Wang;Xuefeng Zheng;Xiaohua Ma;Kuo Zhang;Wentao Zhang;Junchun Bai;Ang Li;Yue Hao
{"title":"Ultra-Low Gate Leakage Current and Enhanced Gate Reliability in p-GaN HEMT With AlN/GaN/AlN Double Barriers Cap Layer","authors":"Kai Liu;Chong Wang;Xuefeng Zheng;Xiaohua Ma;Kuo Zhang;Wentao Zhang;Junchun Bai;Ang Li;Yue Hao","doi":"10.1109/LED.2024.3435501","DOIUrl":null,"url":null,"abstract":"In this letter, we proposed a p-GaN HEMT with a double barriers cap layer (DB-HEMT) using an AlN/GaN/AlN/ p-GaN gate stack. Double barriers are formed at the gate/AlN and GaN/AlN interfaces, introducing an additional barrier in the p-GaN layer to suppress the gate leakage current (\n<inline-formula> <tex-math>${I}_{\\text {GS}}\\text {)}$ </tex-math></inline-formula>\n and improve the maximum continuous operating voltage (\n<inline-formula> <tex-math>${V}_{\\text {GS- {ma} {x}}}\\text {)}$ </tex-math></inline-formula>\n. The GaN/AlN barrier not only creates a new obstacle but also mitigates the electric field through the opposite polarized electric fields engendered by heterojunction. Consequently, holes are difficult to acquire sufficient energy to overcome this barrier and inject into the p-GaN layer, thereby greatly suppressing \n<inline-formula> <tex-math>${I}_{\\text {GS}}$ </tex-math></inline-formula>\n. Simultaneously, a notable positive shift in threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {TH}}\\text {)}$ </tex-math></inline-formula>\n is observed due to the dispersion gate voltage of the AlN layer. As a result, the DB-HEMT achieves an ultra-low \n<inline-formula> <tex-math>${I}_{\\text {GS}}$ </tex-math></inline-formula>\n of \n<inline-formula> <tex-math>$2.74 \\times 10^{-{6}}$ </tex-math></inline-formula>\n mA/mm at \n<inline-formula> <tex-math>${V}_{\\text {GS}} = 9$ </tex-math></inline-formula>\n V, a high \n<inline-formula> <tex-math>${V}_{\\text {GS- {ma} {x}}}$ </tex-math></inline-formula>\n of 8.8 V with a 10-year lifetime of 1% failure and a high \n<inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula>\n of 2.88 V, demonstrating immense potential for power switching applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10614184/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we proposed a p-GaN HEMT with a double barriers cap layer (DB-HEMT) using an AlN/GaN/AlN/ p-GaN gate stack. Double barriers are formed at the gate/AlN and GaN/AlN interfaces, introducing an additional barrier in the p-GaN layer to suppress the gate leakage current ( ${I}_{\text {GS}}\text {)}$ and improve the maximum continuous operating voltage ( ${V}_{\text {GS- {ma} {x}}}\text {)}$ . The GaN/AlN barrier not only creates a new obstacle but also mitigates the electric field through the opposite polarized electric fields engendered by heterojunction. Consequently, holes are difficult to acquire sufficient energy to overcome this barrier and inject into the p-GaN layer, thereby greatly suppressing ${I}_{\text {GS}}$ . Simultaneously, a notable positive shift in threshold voltage ( ${V}_{\text {TH}}\text {)}$ is observed due to the dispersion gate voltage of the AlN layer. As a result, the DB-HEMT achieves an ultra-low ${I}_{\text {GS}}$ of $2.74 \times 10^{-{6}}$ mA/mm at ${V}_{\text {GS}} = 9$ V, a high ${V}_{\text {GS- {ma} {x}}}$ of 8.8 V with a 10-year lifetime of 1% failure and a high ${V}_{\text {TH}}$ of 2.88 V, demonstrating immense potential for power switching applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有 AlN/GaN/AlN 双势垒帽层的 p-GaN HEMT 中的超低栅极漏电流和更高栅极可靠性
在这封信中,我们提出了一种采用 AlN/GaN/AlN/ p-GaN 栅极堆栈、带有双势垒盖层(DB-HEMT)的 p-GaN HEMT。双势垒形成于栅极/AlN 和 GaN/AlN 接口,在 p-GaN 层中引入了一个额外的势垒,以抑制栅极漏电流(${I}_{text {GS}\text {)}$,并提高最大连续工作电压(${V}_{text {GS- {ma} {x}}\text {)}$。GaN/AlN 势垒不仅形成了新的障碍,而且还通过异质结产生的反极化电场减缓了电场。因此,空穴很难获得足够的能量来克服这一势垒并注入 p-GaN 层,从而大大抑制了 ${I}_{text {GS}}$ 。同时,由于 AlN 层的色散栅极电压,阈值电压(${V}_{\text {TH}}\text {)}$ 出现了明显的正向偏移。因此,在 ${V}_{text {GS}} = 9$ V 时,DB-HEMT 实现了 ${I}_{\text {GS}}$ 2.74 \times 10^{-{6}}$ mA/mm 的超低 ${I}_{\text{GS}}$,高 ${V}_{\text {GS- {ma} {x}}$ 8.8 V,10 年寿命中故障率仅为 1%,{V}_{\text {TH}}$ 高达 2.88 V,显示出功率开关应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1