The Gradient Flow of the Bass Functional in Martingale Optimal Transport

Julio Backhoff-Veraguas, Gudmund Pammer, Walter Schachermayer
{"title":"The Gradient Flow of the Bass Functional in Martingale Optimal Transport","authors":"Julio Backhoff-Veraguas, Gudmund Pammer, Walter Schachermayer","doi":"arxiv-2407.18781","DOIUrl":null,"url":null,"abstract":"Given $\\mu$ and $\\nu$, probability measures on $\\mathbb R^d$ in convex order,\na Bass martingale is arguably the most natural martingale starting with law\n$\\mu$ and finishing with law $\\nu$. Indeed, this martingale is obtained by\nstretching a reference Brownian motion so as to meet the data $\\mu,\\nu$. Unless\n$\\mu$ is a Dirac, the existence of a Bass martingale is a delicate subject,\nsince for instance the reference Brownian motion must be allowed to have a\nnon-trivial initial distribution $\\alpha$, not known in advance. Thus the key\nto obtaining the Bass martingale, theoretically as well as practically, lies in\nfinding $\\alpha$. In \\cite{BaSchTsch23} it has been shown that $\\alpha$ is determined as the\nminimizer of the so-called Bass functional. In the present paper we propose to\nminimize this functional by following its gradient flow, or more precisely, the\ngradient flow of its $L^2$-lift. In our main result we show that this gradient\nflow converges in norm to a minimizer of the Bass functional, and when $d=1$ we\nfurther establish that convergence is exponentially fast.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given $\mu$ and $\nu$, probability measures on $\mathbb R^d$ in convex order, a Bass martingale is arguably the most natural martingale starting with law $\mu$ and finishing with law $\nu$. Indeed, this martingale is obtained by stretching a reference Brownian motion so as to meet the data $\mu,\nu$. Unless $\mu$ is a Dirac, the existence of a Bass martingale is a delicate subject, since for instance the reference Brownian motion must be allowed to have a non-trivial initial distribution $\alpha$, not known in advance. Thus the key to obtaining the Bass martingale, theoretically as well as practically, lies in finding $\alpha$. In \cite{BaSchTsch23} it has been shown that $\alpha$ is determined as the minimizer of the so-called Bass functional. In the present paper we propose to minimize this functional by following its gradient flow, or more precisely, the gradient flow of its $L^2$-lift. In our main result we show that this gradient flow converges in norm to a minimizer of the Bass functional, and when $d=1$ we further establish that convergence is exponentially fast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马丁格尔最优传输中巴斯函数的梯度流
给定凸序$\mathbb R^d$上的概率度量$\mu$和$\nu$,巴斯鞅可以说是以定律$\mu$开始并以定律$\nu$结束的最自然的鞅。事实上,这个鞅是通过拉伸一个参考布朗运动以满足数据 $\mu,\nu$ 而得到的。除非$\mu$是狄拉克定律,否则巴斯鞅的存在是一个微妙的问题,因为例如,必须允许参考布朗运动有一个非三维的初始分布$\alpha$,而这是事先不知道的。因此,无论从理论上还是从实践上来说,获得巴斯鞅的关键在于找到 $\alpha$ 。在{BaSchTsch23}中已经证明$\alpha$是由所谓的巴斯函数的最小化决定的。在本文中,我们建议通过跟踪其梯度流,或者更准确地说,其 $L^2$ 抬升的梯度流来最小化这个函数。在我们的主要结果中,我们证明了这种梯度流在规范上收敛于巴斯函数的最小值,而且当 $d=1$ 时,我们进一步确定了收敛速度是指数级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1