Comparative Transcriptomics Reveals the Molecular Mechanisms of Maize in Response to Downy Mildew Disease Caused by Peronosclerospora philippinensis (Weston) Shaw

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-29 DOI:10.1007/s11105-024-01477-y
Edward Cedrick J. Fernandez, Eliza Vie M. Simon-Ada, Jay-Vee S. Mendoza, Anand Noel C. Manohar, Roanne R. Gardoce, Tonette P. Laude, Fe M. Dela Cueva, Darlon V. Lantican
{"title":"Comparative Transcriptomics Reveals the Molecular Mechanisms of Maize in Response to Downy Mildew Disease Caused by Peronosclerospora philippinensis (Weston) Shaw","authors":"Edward Cedrick J. Fernandez, Eliza Vie M. Simon-Ada, Jay-Vee S. Mendoza, Anand Noel C. Manohar, Roanne R. Gardoce, Tonette P. Laude, Fe M. Dela Cueva, Darlon V. Lantican","doi":"10.1007/s11105-024-01477-y","DOIUrl":null,"url":null,"abstract":"<p>Maize is the Philippines’ second most valuable crop based on overall value and total area planted. Still, maize production is hampered by the Philippine downy mildew (DM) disease caused by the pathogen <i>Peronosclerospora philippinensis</i> (Weston) Shaw, causing annual losses in maize production. The use of resistant varieties remains the most effective method of control together with integrated pest and disease management strategies. To date, there are no commercially available maize breeding lines or hybrids deployed in the country while the effectiveness of the fungicide metalaxyl versus DM has declined. Hence, it is necessary to initiate pre-breeding and breeding programs to understand the mechanism of resistance of maize against DM. To comprehend the underlying mechanisms of the presence of the disease, we performed an RNA-Seq comparative transcriptomic approach between mock-inoculated and DM-inoculated susceptible and resistant yellow maize. Among the identified differentially expressed genes (DEGs), we detected 43 DEGs shared in both genotypes which may play roles in the basal defense response of maize upon DM infection. We also identified 68 DEGs exclusive to the susceptible genotype, providing insights into the molecular responses underlying successful DM disease progression in maize. Further, we detected 651 DEGs unique to the resistant genotype. This set of genes revealed that multi-faceted defense strategies govern the molecular basis of DM resistance in maize. These include multi-process regulations such as transcription factors involved in pathogen defense mechanisms, cell wall organization, homeostasis, and many others. Finally, transcriptome-wide variants (SNPs and indels) and their impact on gene function were detected for further application in targeted genotyping-by-sequencing, association studies, and marker-assisted DM resistance breeding.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01477-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Maize is the Philippines’ second most valuable crop based on overall value and total area planted. Still, maize production is hampered by the Philippine downy mildew (DM) disease caused by the pathogen Peronosclerospora philippinensis (Weston) Shaw, causing annual losses in maize production. The use of resistant varieties remains the most effective method of control together with integrated pest and disease management strategies. To date, there are no commercially available maize breeding lines or hybrids deployed in the country while the effectiveness of the fungicide metalaxyl versus DM has declined. Hence, it is necessary to initiate pre-breeding and breeding programs to understand the mechanism of resistance of maize against DM. To comprehend the underlying mechanisms of the presence of the disease, we performed an RNA-Seq comparative transcriptomic approach between mock-inoculated and DM-inoculated susceptible and resistant yellow maize. Among the identified differentially expressed genes (DEGs), we detected 43 DEGs shared in both genotypes which may play roles in the basal defense response of maize upon DM infection. We also identified 68 DEGs exclusive to the susceptible genotype, providing insights into the molecular responses underlying successful DM disease progression in maize. Further, we detected 651 DEGs unique to the resistant genotype. This set of genes revealed that multi-faceted defense strategies govern the molecular basis of DM resistance in maize. These include multi-process regulations such as transcription factors involved in pathogen defense mechanisms, cell wall organization, homeostasis, and many others. Finally, transcriptome-wide variants (SNPs and indels) and their impact on gene function were detected for further application in targeted genotyping-by-sequencing, association studies, and marker-assisted DM resistance breeding.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较转录组学揭示了玉米应对由 Peronosclerospora philippinensis (Weston) Shaw 引起的霜霉病的分子机制
从总价值和总种植面积来看,玉米是菲律宾第二大作物。然而,由病原体 Peronosclerospora philippinensis (Weston) Shaw 引起的菲律宾霜霉病(DM)阻碍了玉米生产,每年都会造成玉米减产。使用抗病品种以及病虫害综合防治战略仍然是最有效的防治方法。迄今为止,该国还没有商业化的玉米育种品系或杂交种,而杀菌剂甲霜灵与 DM 相比,效果有所下降。因此,有必要启动育种前和育种计划,以了解玉米对 DM 的抗性机理。为了了解病害发生的内在机制,我们对模拟接种和接种 DM 的易感黄玉米和抗病黄玉米进行了 RNA-Seq 转录组比较研究。在已鉴定的差异表达基因(DEGs)中,我们检测到两种基因型共有的 43 个 DEGs,它们可能在 DM 感染后玉米的基础防御反应中发挥作用。我们还发现了 68 个易感基因型独有的 DEGs,为了解玉米 DM 病害成功发展的分子反应提供了线索。此外,我们还发现了 651 个抗性基因型独有的 DEGs。这组基因揭示了多方面的防御策略是玉米抗 DM 的分子基础。其中包括多过程调控,如参与病原体防御机制、细胞壁组织、平衡等的转录因子。最后,检测了全转录组变异(SNPs 和 indels)及其对基因功能的影响,以便进一步应用于定向基因分型测序、关联研究和标记辅助的 DM 抗性育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1