Ali Mohammad Pourrahimi, Somayeh Tajik, Fariba Garkani Nejad, Hadi Beitollahi
{"title":"Simultaneous Voltammetric Determination of Morphine and Tramadol Using Zirconium-Based Metal Organic Framework Modified Electrode","authors":"Ali Mohammad Pourrahimi, Somayeh Tajik, Fariba Garkani Nejad, Hadi Beitollahi","doi":"10.1007/s11244-024-01999-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, a practical approach was utilized to fabricate a zirconium (Zr)-based metal organic framework (UiO-66 MOF) via a one-pot solvothermal method, with the intention of employing it as an electrocatalyst. The characterization of UiO-66 MOF was investigated by several techniques. The synthesized UiO-66 MOF was employed to modify a screen-printed graphite electrode (UiO-66 MOF/SPGE) using a drop-casting technique. The electrochemical characteristics of the UiO-66 MOF/SPGE sensor for morphine oxidation were analyzed through various techniques, including cyclic voltammetry (CV), chronoamperometry, and differential pulse voltammetry (DPV). Under the optimized conditions, the prepared UiO-66 MOF/SPGE exhibited a linear range of 0.03 to 440.0 µM for morphine detection, as evidenced by the DPV results. The limit of detection for morphine was found to be 0.01 µM. The proposed sensor displayed excellent electro-catalytic activity toward the simultaneous determination of tramadol and morphine. The peak-to-peak potential separations between tramadol and morphine are 400 mV. Furthermore, the developed sensor was effectively utilized for the quantification of tramadol and morphine in real samples, yielding satisfactory recovery values.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01999-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a practical approach was utilized to fabricate a zirconium (Zr)-based metal organic framework (UiO-66 MOF) via a one-pot solvothermal method, with the intention of employing it as an electrocatalyst. The characterization of UiO-66 MOF was investigated by several techniques. The synthesized UiO-66 MOF was employed to modify a screen-printed graphite electrode (UiO-66 MOF/SPGE) using a drop-casting technique. The electrochemical characteristics of the UiO-66 MOF/SPGE sensor for morphine oxidation were analyzed through various techniques, including cyclic voltammetry (CV), chronoamperometry, and differential pulse voltammetry (DPV). Under the optimized conditions, the prepared UiO-66 MOF/SPGE exhibited a linear range of 0.03 to 440.0 µM for morphine detection, as evidenced by the DPV results. The limit of detection for morphine was found to be 0.01 µM. The proposed sensor displayed excellent electro-catalytic activity toward the simultaneous determination of tramadol and morphine. The peak-to-peak potential separations between tramadol and morphine are 400 mV. Furthermore, the developed sensor was effectively utilized for the quantification of tramadol and morphine in real samples, yielding satisfactory recovery values.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.