{"title":"Insights on Asymmetrical Electrode Geometric Effect to Enhance Gate-Drain-Bias Stability of Vertical-Channel InGaZnO Thin-Film Transistor","authors":"Dong-Hee Lee, Young-Ha Kwon, Nak-Jin Seong, Kyu-Jeong Choi, Jong-Heon Yang, Chi-Sun Hwang, Sung-Min Yoon","doi":"10.1007/s13391-024-00513-z","DOIUrl":null,"url":null,"abstract":"<div><p>The asymmetrical gate-drain bias stress (GDBS) stability of a mesa-shaped vertical-channel thin-film transistors (VTFTs) was investigated using an In-Ga-Zn–O (IGZO) active layer prepared by atomic-layer deposition. The GDBS measurements were conducted with variations in electrode configurations and overlapped areas between the active and bottom electrode regions. The GDBS stability of the IGZO VTFTs was found to be significantly degraded, when a plasma-damaged electrode was used as the drain electrode, due to the formation of defective channel regions that are more susceptible to the hot carrier effect. To address the effect of plasma-damaged electrode, an ultrathin passivation layer was introduced, resulting in the achievement of VTFTs with excellent and uniform GDBS stability.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"702 - 710"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00513-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The asymmetrical gate-drain bias stress (GDBS) stability of a mesa-shaped vertical-channel thin-film transistors (VTFTs) was investigated using an In-Ga-Zn–O (IGZO) active layer prepared by atomic-layer deposition. The GDBS measurements were conducted with variations in electrode configurations and overlapped areas between the active and bottom electrode regions. The GDBS stability of the IGZO VTFTs was found to be significantly degraded, when a plasma-damaged electrode was used as the drain electrode, due to the formation of defective channel regions that are more susceptible to the hot carrier effect. To address the effect of plasma-damaged electrode, an ultrathin passivation layer was introduced, resulting in the achievement of VTFTs with excellent and uniform GDBS stability.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.