Evolution of a Biocatalysis CURE for Organic Chemistry Students

IF 2.5 3区 教育学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical Education Pub Date : 2024-07-30 DOI:10.1021/acs.jchemed.4c00118
Anna I. Wurz, Clark I. Andersen, Joi P. Walker, Robert M. Hughes
{"title":"Evolution of a Biocatalysis CURE for Organic Chemistry Students","authors":"Anna I. Wurz, Clark I. Andersen, Joi P. Walker, Robert M. Hughes","doi":"10.1021/acs.jchemed.4c00118","DOIUrl":null,"url":null,"abstract":"Course-based undergraduate research experiences (CUREs) are increasingly recognized as valuable tools for engaging students in authentic research, for removing barriers to participation in research, and for the retention of students in STEM disciplines. Recently, we developed a CURE sequence for organic chemistry students in which they conducted self-directed investigations into bio- and organocatalytic approaches to the asymmetric synthesis of warfarin, a commonly prescribed anticoagulant with the potential for serious side effects. In this CURE, students worked on a chemistry problem with implications for modern medical practice while learning fundamental techniques in organic synthesis, chromatography, and spectroscopy. While engaging students in creative research activity, this CURE also emphasized working in scientific teams, an approach that prepares students for current practices in academic and industrial research settings. Publications on the design and implementation of CUREs have increased considerably in the past decade, but the benefits to faculty research are not well-documented. This article describes the evolution of this CURE from a screening-based approach to the identification of biocatalysts for the synthesis of warfarin to a more targeted approach using small biologically inspired catalysts. The most recent iteration of the biocatalysis CURE generated results that are included in a peer-reviewed original research publication with student coauthors (<contrib-group person-group-type=\"allauthors\"><span>Wurz, A. I.</span></contrib-group>; et al. <cite><i>ChemRxiv</i></cite> <span>2024</span>, 10.26434/chemrxiv-2024-krf7h</pub-id>).","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jchemed.4c00118","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Course-based undergraduate research experiences (CUREs) are increasingly recognized as valuable tools for engaging students in authentic research, for removing barriers to participation in research, and for the retention of students in STEM disciplines. Recently, we developed a CURE sequence for organic chemistry students in which they conducted self-directed investigations into bio- and organocatalytic approaches to the asymmetric synthesis of warfarin, a commonly prescribed anticoagulant with the potential for serious side effects. In this CURE, students worked on a chemistry problem with implications for modern medical practice while learning fundamental techniques in organic synthesis, chromatography, and spectroscopy. While engaging students in creative research activity, this CURE also emphasized working in scientific teams, an approach that prepares students for current practices in academic and industrial research settings. Publications on the design and implementation of CUREs have increased considerably in the past decade, but the benefits to faculty research are not well-documented. This article describes the evolution of this CURE from a screening-based approach to the identification of biocatalysts for the synthesis of warfarin to a more targeted approach using small biologically inspired catalysts. The most recent iteration of the biocatalysis CURE generated results that are included in a peer-reviewed original research publication with student coauthors (Wurz, A. I.; et al. ChemRxiv 2024, 10.26434/chemrxiv-2024-krf7h).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机化学学生生物催化 CURE 的演变
以课程为基础的本科生研究经历(CURE)越来越被认为是让学生参与真实研究、消除参与研究的障碍以及留住 STEM 学科学生的重要工具。最近,我们为有机化学专业的学生开发了一个 CURE 序列,让他们自主研究华法林不对称合成的生物和有机催化方法,华法林是一种常用的抗凝剂,可能会产生严重的副作用。在该团结与种族平等教育中心,学生们在学习有机合成、色谱法和光谱学基本技术的同时,还研究了一个对现代医学实践有影响的化学问题。在让学生参与创造性研究活动的同时,该 CURE 还强调以科学团队的形式开展工作,这种方法为学生适应当前的学术和工业研究环境做好了准备。在过去十年中,有关设计和实施团结与种族平等教育的出版物大幅增加,但其对教师研究工作的益处却没有得到充分证明。本文介绍了该 CURE 的演变过程,从基于筛选的方法来鉴定合成华法林的生物催化剂,到使用小型生物灵感催化剂的更有针对性的方法。生物催化CURE的最近一次迭代所产生的结果已被收录在一篇经同行评审的原始研究论文中,该论文的共同作者是学生(Wurz, A. I.; et al. ChemRxiv 2024, 10.26434/chemrxiv-2024-krf7h)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Education
Journal of Chemical Education 化学-化学综合
CiteScore
5.60
自引率
50.00%
发文量
465
审稿时长
6.5 months
期刊介绍: The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.
期刊最新文献
Issue Publication Information Issue Editorial Masthead The Dawn of Generative Artificial Intelligence in Chemistry Education Analysis of Dyed Textile Fibers: Connecting Small Molecule and Polymer Chemistry with Forensic Science Repetitive Deformation of Ga-Based Liquid Metal in Acidified CuCl2 or FeCl3 Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1