Pub Date : 2024-11-01eCollection Date: 2024-11-12DOI: 10.1021/acs.jchemed.4c01123
John O'Donoghue, Natalia García Doménech, Dearbhla Tully, Niamh McGoldrick, Fiona McArdle, Mary Connolly, David J Otway, Will Daly, Lynette Keeney, Mervyn Horgan
Chemistry is often associated with formal learning environments and has been described as overly serious by the general public, lacking some of the fun and energy of other sciences. However, it is difficult to provide hands-on chemistry activities outside the lab and other formal learning environments. Here, a simple electrochemistry based activity has been used for public engagement using household items and play dough to create a fun and playful experience for all ages. The benefits afforded by outdoor learning for developing curiosity and interest in science has also been explored through different event formats. The use of a "Smiley Stand" with "emojis" for gathering participant feedback was successfully deployed alongside interviews with the "Ambassadors" who facilitated the activity. Overall, it was found that the activity encouraged two-way conversations between the participants and the ambassadors, with few negative responses and many positive ones received. The activity also impacted the ambassadors' own view of science.
{"title":"Do You Want to Make a Battery? Insights from the Development and Evaluation of a Chemistry Public Engagement Activity.","authors":"John O'Donoghue, Natalia García Doménech, Dearbhla Tully, Niamh McGoldrick, Fiona McArdle, Mary Connolly, David J Otway, Will Daly, Lynette Keeney, Mervyn Horgan","doi":"10.1021/acs.jchemed.4c01123","DOIUrl":"10.1021/acs.jchemed.4c01123","url":null,"abstract":"<p><p>Chemistry is often associated with formal learning environments and has been described as overly serious by the general public, lacking some of the fun and energy of other sciences. However, it is difficult to provide hands-on chemistry activities outside the lab and other formal learning environments. Here, a simple electrochemistry based activity has been used for public engagement using household items and play dough to create a fun and playful experience for all ages. The benefits afforded by outdoor learning for developing curiosity and interest in science has also been explored through different event formats. The use of a \"Smiley Stand\" with \"emojis\" for gathering participant feedback was successfully deployed alongside interviews with the \"Ambassadors\" who facilitated the activity. Overall, it was found that the activity encouraged two-way conversations between the participants and the ambassadors, with few negative responses and many positive ones received. The activity also impacted the ambassadors' own view of science.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 11","pages":"5089-5096"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10eCollection Date: 2024-11-12DOI: 10.1021/acs.jchemed.4c00166
Ievgen Nedrygailov, Darragh O'Brien, Scott Monaghan, Paul Hurley, Subhajit Biswas, Justin D Holmes
At the nanometer scale, electrolyte solutions behave differently compared to their bulk counterparts. This phenomenon forms the basis for the field of nanofluidics, which is dedicated to studying the transport of fluids within and around objects with dimensions of less than 100 nm. Despite the increasing importance of nanofluidics for a wide range of chemical and biochemical applications, the ability to study this field in undergraduate laboratories remains limited due to challenges associated with producing suitable nanoscale objects. This article outlines a straightforward procedure, using easily accessible materials and chemical reagents, to create nanofluidic membranes, called nanowood, containing channels with diameters less than 100 nm. We describe the fabrication process of nanofluidic channels in wood and demonstrate the presence of these nanochannels based on conductance measurements using electrochemical impedance spectroscopy.
{"title":"Nanowood: A Unique Natural Nanomaterial That Can Be Obtained Using Household Chemicals.","authors":"Ievgen Nedrygailov, Darragh O'Brien, Scott Monaghan, Paul Hurley, Subhajit Biswas, Justin D Holmes","doi":"10.1021/acs.jchemed.4c00166","DOIUrl":"10.1021/acs.jchemed.4c00166","url":null,"abstract":"<p><p>At the nanometer scale, electrolyte solutions behave differently compared to their bulk counterparts. This phenomenon forms the basis for the field of nanofluidics, which is dedicated to studying the transport of fluids within and around objects with dimensions of less than 100 nm. Despite the increasing importance of nanofluidics for a wide range of chemical and biochemical applications, the ability to study this field in undergraduate laboratories remains limited due to challenges associated with producing suitable nanoscale objects. This article outlines a straightforward procedure, using easily accessible materials and chemical reagents, to create nanofluidic membranes, called nanowood, containing channels with diameters less than 100 nm. We describe the fabrication process of nanofluidic channels in wood and demonstrate the presence of these nanochannels based on conductance measurements using electrochemical impedance spectroscopy.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 11","pages":"4931-4936"},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-11-12DOI: 10.1021/acs.jchemed.4c00030
Jayalakshmi Sridhar, Galina Goloverda
Molecular Structure and Organic Synthesis (MSOS) is an upper-division undergraduate (capstone) laboratory course for undergraduates majoring in chemistry at Xavier University of Louisiana (XULA). The course is designed for juniors and seniors and is based on self-regulated research and learning under limited instructor supervision. It includes a 2-step synthetic project, chosen by each student in the class from a list based on the Organic Synthesis periodical or actual faculty research and then carried out independently. In order to prepare students for their syntheses, we recently included a new project in the course syllabus focused on a reaction optimization that introduces the undergraduate students to the concepts of raising reaction yield, improving product purity, lessening the environmental impact of the reaction, and/or increasing its cost efficiency. A team of 2-3 students performs a preliminary experiment. A rerun by each individual team member incorporating his or her modifications follows this. The goal of this preparatory exercise is to enhance the students' soft skills, including teamwork, critical analysis of data, and scientific report preparation as well as develop a deeper understanding of the reaction mechanism to make calculated adjustments to reaction conditions for optimization.
{"title":"Reaction Optimization Experiment for Undergraduate Capstone Organic Chemistry Laboratory Course.","authors":"Jayalakshmi Sridhar, Galina Goloverda","doi":"10.1021/acs.jchemed.4c00030","DOIUrl":"10.1021/acs.jchemed.4c00030","url":null,"abstract":"<p><p>Molecular Structure and Organic Synthesis (MSOS) is an upper-division undergraduate (capstone) laboratory course for undergraduates majoring in chemistry at Xavier University of Louisiana (XULA). The course is designed for juniors and seniors and is based on self-regulated research and learning under limited instructor supervision. It includes a 2-step synthetic project, chosen by each student in the class from a list based on the Organic Synthesis periodical or actual faculty research and then carried out independently. In order to prepare students for their syntheses, we recently included a new project in the course syllabus focused on a reaction optimization that introduces the undergraduate students to the concepts of raising reaction yield, improving product purity, lessening the environmental impact of the reaction, and/or increasing its cost efficiency. A team of 2-3 students performs a preliminary experiment. A rerun by each individual team member incorporating his or her modifications follows this. The goal of this preparatory exercise is to enhance the students' soft skills, including teamwork, critical analysis of data, and scientific report preparation as well as develop a deeper understanding of the reaction mechanism to make calculated adjustments to reaction conditions for optimization.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 11","pages":"4680-4685"},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02eCollection Date: 2024-11-12DOI: 10.1021/acs.jchemed.4c00236
Simbarashe Nkomo, Alia Bly
In undergraduate science education, laboratory courses stand as essential cornerstones of experiential learning. Chemistry laboratory courses offer students unique hands-on experiences that bridge the gap between theoretical knowledge and practical application. The journey through the undergraduate chemistry curriculum is paved with a series of conceptual gateways known as threshold concepts that can dramatically shape a student's understanding and success. We identified the idea of intermolecular forces (IMFs) as a threshold concept to students' ability to link molecular structures, properties, and applications to real-world problems such as extraction and separation of compounds. The development of course-specific pedagogical tools can provide students with the scaffolding necessary for the transition from novice to expert-level disciplinary comprehension. This work presents the development process of a Threshold Concept Assessment Rubric (TCAR) based on Johnstone's triangle framework and discusses its application for evaluating students' progress in overcoming a threshold concept. The rubric is used in a 200-level multilayer laboratory course that is intentionally designed with intermolecular forces as the central theme. We analyze the role and structure of different questions to provide a holistic assessment of students' learning processes using sample assignments. Furthermore, we demonstrate how insights from statistical analyses can highlight areas in which students struggle to gain expert or exemplary-level understanding of IMFs. This rubric development approach can be applied to other threshold concepts.
在本科科学教育中,实验课程是体验式学习的重要基石。化学实验课程为学生提供了独特的实践经验,在理论知识和实际应用之间架起了一座桥梁。在本科化学课程的学习过程中,有一系列被称为 "门槛概念 "的概念门径,它们可以极大地影响学生的理解和成功。我们发现,分子间作用力(IMFs)是学生将分子结构、性质和应用与实际问题(如化合物的萃取和分离)联系起来的一个门槛概念。开发针对特定课程的教学工具可以为学生提供从新手到专家级学科理解过渡所需的支架。本作品介绍了基于约翰斯通三角形框架的阈值概念评估标准(TCAR)的开发过程,并讨论了其在评估学生克服阈值概念的进展方面的应用。该评分标准用于一门 200 级多层实验课程,该课程有意将分子间作用力作为中心主题。我们分析了不同问题的作用和结构,以便利用作业样本对学生的学习过程进行整体评估。此外,我们还展示了如何通过统计分析来突出学生在获得专家或模范水平的 IMF 理解方面所面临的困难。这种评分标准开发方法可应用于其他阈值概念。
{"title":"Developing a Threshold Concept Assessment Rubric: Using the Johnstone's Triangle Framework for Understanding Intermolecular Forces.","authors":"Simbarashe Nkomo, Alia Bly","doi":"10.1021/acs.jchemed.4c00236","DOIUrl":"10.1021/acs.jchemed.4c00236","url":null,"abstract":"<p><p>In undergraduate science education, laboratory courses stand as essential cornerstones of experiential learning. Chemistry laboratory courses offer students unique hands-on experiences that bridge the gap between theoretical knowledge and practical application. The journey through the undergraduate chemistry curriculum is paved with a series of conceptual gateways known as threshold concepts that can dramatically shape a student's understanding and success. We identified the idea of intermolecular forces (IMFs) as a threshold concept to students' ability to link molecular structures, properties, and applications to real-world problems such as extraction and separation of compounds. The development of course-specific pedagogical tools can provide students with the scaffolding necessary for the transition from novice to expert-level disciplinary comprehension. This work presents the development process of a Threshold Concept Assessment Rubric (TCAR) based on Johnstone's triangle framework and discusses its application for evaluating students' progress in overcoming a threshold concept. The rubric is used in a 200-level multilayer laboratory course that is intentionally designed with intermolecular forces as the central theme. We analyze the role and structure of different questions to provide a holistic assessment of students' learning processes using sample assignments. Furthermore, we demonstrate how insights from statistical analyses can highlight areas in which students struggle to gain expert or exemplary-level understanding of IMFs. This rubric development approach can be applied to other threshold concepts.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 11","pages":"4694-4703"},"PeriodicalIF":2.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-11-12DOI: 10.1021/acs.jchemed.4c00783
Andrew Kreps, Ian Brown, Thomas J Wenzel, Renée Cole
Faculty development programs play a crucial role in enhancing learning by equipping educators with the necessary skills, knowledge, and pedagogical strategies to teach more effectively. One such program is the Promoting Active Learning in Analytical Chemistry (PALAC) workshop, which aimed to educate faculty on methods to create and use active learning course materials to support students during the process of learning. This research aimed to assess the design of classroom instructional materials generated by faculty that attended the PALAC workshops. The theories of Vygotsky's zone of proximal development and scaffolding were used as lenses to characterize the materials because they describe the benefits of providing support through the process of developing knowledge. The active learning materials were analyzed by assigning the cognitive levels of processing, as described by Marzano's taxonomy, to all questions asked across 134 in-class activities. The use of the cognitive levels of processing allowed the researchers to gauge the presence of scaffolding by tracking how the cognitive levels of processing changed from question to question across each in-class activity. The results from this study indicate that the majority of materials provide opportunities for students to engage with higher-order questions, but there is less evidence for the effective and consistent structuring of the materials. These results have implications for future faculty development programs, suggesting the need to allot more time for faculty to practice developing effective classroom materials. In conjunction, this work demonstrates the effective use of Marzano's taxonomy in assessing the cognitive structure of in-class activities.
{"title":"Structuring Materials to Support Student Learning: Analysis of Instructional Materials from a Professional Development Workshop.","authors":"Andrew Kreps, Ian Brown, Thomas J Wenzel, Renée Cole","doi":"10.1021/acs.jchemed.4c00783","DOIUrl":"10.1021/acs.jchemed.4c00783","url":null,"abstract":"<p><p>Faculty development programs play a crucial role in enhancing learning by equipping educators with the necessary skills, knowledge, and pedagogical strategies to teach more effectively. One such program is the Promoting Active Learning in Analytical Chemistry (PALAC) workshop, which aimed to educate faculty on methods to create and use active learning course materials to support students during the process of learning. This research aimed to assess the design of classroom instructional materials generated by faculty that attended the PALAC workshops. The theories of Vygotsky's zone of proximal development and scaffolding were used as lenses to characterize the materials because they describe the benefits of providing support through the process of developing knowledge. The active learning materials were analyzed by assigning the cognitive levels of processing, as described by Marzano's taxonomy, to all questions asked across 134 in-class activities. The use of the cognitive levels of processing allowed the researchers to gauge the presence of scaffolding by tracking how the cognitive levels of processing changed from question to question across each in-class activity. The results from this study indicate that the majority of materials provide opportunities for students to engage with higher-order questions, but there is less evidence for the effective and consistent structuring of the materials. These results have implications for future faculty development programs, suggesting the need to allot more time for faculty to practice developing effective classroom materials. In conjunction, this work demonstrates the effective use of Marzano's taxonomy in assessing the cognitive structure of in-class activities.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 11","pages":"4603-4613"},"PeriodicalIF":2.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1021/acs.jchemed.3c00941
Thomas Holme*,
Chemical Education Research (CER) is perhaps the most recent addition to the corpus of educational innovation within the teaching and learning of chemistry. Nonetheless, the richness and diversity of the scholarly work within CER has blossomed impressively in the (relatively speaking) short time it has been part of the larger chemistry education enterprise. While setting the stage in historical context, the areas of emphasis captured in a new Virtual Issue about the publication of CER articles in the Journal over the past 100 volumes are summarized.
{"title":"Emerging Scholarship Approaches: 100 Years of Chemical Education Research","authors":"Thomas Holme*, ","doi":"10.1021/acs.jchemed.3c00941","DOIUrl":"https://doi.org/10.1021/acs.jchemed.3c00941","url":null,"abstract":"<p >Chemical Education Research (CER) is perhaps the most recent addition to the corpus of educational innovation within the teaching and learning of chemistry. Nonetheless, the richness and diversity of the scholarly work within CER has blossomed impressively in the (relatively speaking) short time it has been part of the larger chemistry education enterprise. While setting the stage in historical context, the areas of emphasis captured in a new Virtual Issue about the publication of CER articles in the <i>Journal</i> over the past 100 volumes are summarized.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3745–3747"},"PeriodicalIF":3.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1021/acs.jchemed.3c00910
Lynda Dunlop*, Glenn Adam Hurst, Denise Quiroz-Martínez and Jane E. Wissinger,
The Journal of Chemical Education announces a call for papers for an upcoming virtual special issue on Action for Climate Empowerment in Chemistry Education.
《化学教育杂志》宣布,将为即将出版的《化学教育中的气候赋权行动》虚拟特刊征集论文。
{"title":"Call for papers for Virtual Special Issue of Journal of Chemical Education: Action for Climate Empowerment in Chemistry Education","authors":"Lynda Dunlop*, Glenn Adam Hurst, Denise Quiroz-Martínez and Jane E. Wissinger, ","doi":"10.1021/acs.jchemed.3c00910","DOIUrl":"https://doi.org/10.1021/acs.jchemed.3c00910","url":null,"abstract":"<p >The <i>Journal of Chemical Education</i> announces a call for papers for an upcoming virtual special issue on <i>Action for Climate Empowerment in Chemistry Education</i>.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3749–3751"},"PeriodicalIF":3.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1021/acs.jchemed.3c00843
Mary Beth Mulcahy*, and , Thomas A. Holme*,
{"title":"Working Together: Chemical Safety and Education","authors":"Mary Beth Mulcahy*, and , Thomas A. Holme*, ","doi":"10.1021/acs.jchemed.3c00843","DOIUrl":"https://doi.org/10.1021/acs.jchemed.3c00843","url":null,"abstract":"","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3748"},"PeriodicalIF":3.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1021/acs.jchemed.3c00433
Shannon J. Saluga, Alyssa M. Burns, Yong Li, Melanie M. Nguyen and Kimberly D. Edwards*,
This paper describes the creation of a second quarter of a two-quarter sequence of argument-driven inquiry general chemistry laboratories. The course contains four projects investigating the chemistry of spices (vanilla, cinnamon, spearmint, and cloves) and incorporates a structured review and hands-on applications of fundamental concepts necessary to transition between general and organic chemistry (colligative properties, TLC, synthesis, characterization tests, and unknown determination). The inquiry-based curriculum was designed to give students increasing responsibility and freedom to develop experimental design skills. Specifications grading is used to increase concept iteration and encourage teamwork among students. Survey results for student learning style, feelings about chemistry, and perception of the course format are compared for the first and second quarter courses. Changes in survey responses show higher average positive responses in many categories for the second quarter course.
{"title":"A Specifications-Graded, Spice-Themed, General Chemistry Laboratory Course Using an Argument-Driven Inquiry Approach","authors":"Shannon J. Saluga, Alyssa M. Burns, Yong Li, Melanie M. Nguyen and Kimberly D. Edwards*, ","doi":"10.1021/acs.jchemed.3c00433","DOIUrl":"https://doi.org/10.1021/acs.jchemed.3c00433","url":null,"abstract":"<p >This paper describes the creation of a second quarter of a two-quarter sequence of argument-driven inquiry general chemistry laboratories. The course contains four projects investigating the chemistry of spices (vanilla, cinnamon, spearmint, and cloves) and incorporates a structured review and hands-on applications of fundamental concepts necessary to transition between general and organic chemistry (colligative properties, TLC, synthesis, characterization tests, and unknown determination). The inquiry-based curriculum was designed to give students increasing responsibility and freedom to develop experimental design skills. Specifications grading is used to increase concept iteration and encourage teamwork among students. Survey results for student learning style, feelings about chemistry, and perception of the course format are compared for the first and second quarter courses. Changes in survey responses show higher average positive responses in many categories for the second quarter course.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3903–3915"},"PeriodicalIF":3.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.3c00433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1021/acs.jchemed.3c00917
Caterina G. C. Marques Netto*,
{"title":"Correction to “Board-Game-Based Online Methodology Improves Student Learning and Sense of Well-Being during the COVID-19 Pandemic”","authors":"Caterina G. C. Marques Netto*, ","doi":"10.1021/acs.jchemed.3c00917","DOIUrl":"https://doi.org/10.1021/acs.jchemed.3c00917","url":null,"abstract":"","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"4161"},"PeriodicalIF":3.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}