NARVis: Neural Accelerated Rendering for Real-Time Scientific Point Cloud Visualization

Srinidhi Hegde, Kaur Kullman, Thomas Grubb, Leslie Lait, Stephen Guimond, Matthias Zwicker
{"title":"NARVis: Neural Accelerated Rendering for Real-Time Scientific Point Cloud Visualization","authors":"Srinidhi Hegde, Kaur Kullman, Thomas Grubb, Leslie Lait, Stephen Guimond, Matthias Zwicker","doi":"arxiv-2407.19097","DOIUrl":null,"url":null,"abstract":"Exploring scientific datasets with billions of samples in real-time\nvisualization presents a challenge - balancing high-fidelity rendering with\nspeed. This work introduces a novel renderer - Neural Accelerated Renderer\n(NAR), that uses the neural deferred rendering framework to visualize\nlarge-scale scientific point cloud data. NAR augments a real-time point cloud\nrendering pipeline with high-quality neural post-processing, making the\napproach ideal for interactive visualization at scale. Specifically, we train a\nneural network to learn the point cloud geometry from a high-performance\nmulti-stream rasterizer and capture the desired postprocessing effects from a\nconventional high-quality renderer. We demonstrate the effectiveness of NAR by\nvisualizing complex multidimensional Lagrangian flow fields and photometric\nscans of a large terrain and compare the renderings against the\nstate-of-the-art high-quality renderers. Through extensive evaluation, we\ndemonstrate that NAR prioritizes speed and scalability while retaining high\nvisual fidelity. We achieve competitive frame rates of $>$ 126 fps for\ninteractive rendering of $>$ 350M points (i.e., an effective throughput of $>$\n44 billion points per second) using $\\sim$12 GB of memory on RTX 2080 Ti GPU.\nFurthermore, we show that NAR is generalizable across different point clouds\nwith similar visualization needs and the desired post-processing effects could\nbe obtained with substantial high quality even at lower resolutions of the\noriginal point cloud, further reducing the memory requirements.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring scientific datasets with billions of samples in real-time visualization presents a challenge - balancing high-fidelity rendering with speed. This work introduces a novel renderer - Neural Accelerated Renderer (NAR), that uses the neural deferred rendering framework to visualize large-scale scientific point cloud data. NAR augments a real-time point cloud rendering pipeline with high-quality neural post-processing, making the approach ideal for interactive visualization at scale. Specifically, we train a neural network to learn the point cloud geometry from a high-performance multi-stream rasterizer and capture the desired postprocessing effects from a conventional high-quality renderer. We demonstrate the effectiveness of NAR by visualizing complex multidimensional Lagrangian flow fields and photometric scans of a large terrain and compare the renderings against the state-of-the-art high-quality renderers. Through extensive evaluation, we demonstrate that NAR prioritizes speed and scalability while retaining high visual fidelity. We achieve competitive frame rates of $>$ 126 fps for interactive rendering of $>$ 350M points (i.e., an effective throughput of $>$ 44 billion points per second) using $\sim$12 GB of memory on RTX 2080 Ti GPU. Furthermore, we show that NAR is generalizable across different point clouds with similar visualization needs and the desired post-processing effects could be obtained with substantial high quality even at lower resolutions of the original point cloud, further reducing the memory requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NARVis:用于实时科学点云可视化的神经加速渲染技术
以实时可视化方式探索拥有数十亿样本的科学数据集是一项挑战--如何在高保真渲染与速度之间取得平衡。这项工作介绍了一种新型渲染器--神经加速渲染器(NAR),它使用神经延迟渲染框架来可视化大规模科学点云数据。NAR 利用高质量的神经后处理功能增强了实时点云渲染管道,使该方法成为大规模交互式可视化的理想选择。具体来说,我们训练神经网络从高性能多流光栅器中学习点云几何图形,并从传统的高质量渲染器中捕捉所需的后处理效果。我们通过可视化复杂的多维拉格朗日流场和大型地形的光度扫描演示了 NAR 的有效性,并将渲染效果与最先进的高质量渲染器进行了比较。通过广泛的评估,我们证明了 NAR 在保持高视觉保真度的同时,优先考虑了速度和可扩展性。我们在RTX 2080 Ti GPU上使用了12 GB内存,在交互式渲染3.5亿个点(即每秒有效吞吐量440亿个点)时,帧率达到了126帧/秒。此外,我们还展示了NAR在具有类似可视化需求的不同点云上的通用性,即使在原始点云分辨率较低的情况下,也能获得所需的高质量后处理效果,从而进一步降低了内存需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis Instant Facial Gaussians Translator for Relightable and Interactable Facial Rendering StereoCrafter: Diffusion-based Generation of Long and High-fidelity Stereoscopic 3D from Monocular Videos Multi-scale Cycle Tracking in Dynamic Planar Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1