Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video

Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J. Black, Bernhard Thomaszewski, Christina Tsalicoglou, Otmar Hilliges
{"title":"Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video","authors":"Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J. Black, Bernhard Thomaszewski, Christina Tsalicoglou, Otmar Hilliges","doi":"arxiv-2409.08189","DOIUrl":null,"url":null,"abstract":"We introduce Gaussian Garments, a novel approach for reconstructing realistic\nsimulation-ready garment assets from multi-view videos. Our method represents\ngarments with a combination of a 3D mesh and a Gaussian texture that encodes\nboth the color and high-frequency surface details. This representation enables\naccurate registration of garment geometries to multi-view videos and helps\ndisentangle albedo textures from lighting effects. Furthermore, we demonstrate\nhow a pre-trained graph neural network (GNN) can be fine-tuned to replicate the\nreal behavior of each garment. The reconstructed Gaussian Garments can be\nautomatically combined into multi-garment outfits and animated with the\nfine-tuned GNN.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Gaussian Garments, a novel approach for reconstructing realistic simulation-ready garment assets from multi-view videos. Our method represents garments with a combination of a 3D mesh and a Gaussian texture that encodes both the color and high-frequency surface details. This representation enables accurate registration of garment geometries to multi-view videos and helps disentangle albedo textures from lighting effects. Furthermore, we demonstrate how a pre-trained graph neural network (GNN) can be fine-tuned to replicate the real behavior of each garment. The reconstructed Gaussian Garments can be automatically combined into multi-garment outfits and animated with the fine-tuned GNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯服装:从多视角视频中重建具有逼真外观的仿真服装
我们介绍了高斯服装,这是一种从多视角视频中重建可用于仿真的服装资产的新方法。我们的方法结合三维网格和高斯纹理来表示服装,高斯纹理对颜色和高频表面细节都进行了编码。这种表示方法能将服装几何图形准确地注册到多视角视频中,并有助于将反照率纹理与光照效果区分开来。此外,我们还演示了如何对预先训练好的图神经网络(GNN)进行微调,以复制每件服装的真实行为。重建后的高斯服装可以美观地组合成多件服装,并通过微调后的 GNN 制作动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1