Potential weights and implicit causal designs in linear regression

Jiafeng Chen
{"title":"Potential weights and implicit causal designs in linear regression","authors":"Jiafeng Chen","doi":"arxiv-2407.21119","DOIUrl":null,"url":null,"abstract":"When do linear regressions estimate causal effects in quasi-experiments? This\npaper provides a generic diagnostic that assesses whether a given linear\nregression specification on a given dataset admits a design-based\ninterpretation. To do so, we define a notion of potential weights, which encode\ncounterfactual decisions a given regression makes to unobserved potential\noutcomes. If the specification does admit such an interpretation, this\ndiagnostic can find a vector of unit-level treatment assignment probabilities\n-- which we call an implicit design -- under which the regression estimates a\ncausal effect. This diagnostic also finds the implicit causal effect estimand.\nKnowing the implicit design and estimand adds transparency, leads to further\nsanity checks, and opens the door to design-based statistical inference. When\napplied to regression specifications studied in the causal inference\nliterature, our framework recovers and extends existing theoretical results.\nWhen applied to widely-used specifications not covered by existing causal\ninference literature, our framework generates new theoretical insights.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When do linear regressions estimate causal effects in quasi-experiments? This paper provides a generic diagnostic that assesses whether a given linear regression specification on a given dataset admits a design-based interpretation. To do so, we define a notion of potential weights, which encode counterfactual decisions a given regression makes to unobserved potential outcomes. If the specification does admit such an interpretation, this diagnostic can find a vector of unit-level treatment assignment probabilities -- which we call an implicit design -- under which the regression estimates a causal effect. This diagnostic also finds the implicit causal effect estimand. Knowing the implicit design and estimand adds transparency, leads to further sanity checks, and opens the door to design-based statistical inference. When applied to regression specifications studied in the causal inference literature, our framework recovers and extends existing theoretical results. When applied to widely-used specifications not covered by existing causal inference literature, our framework generates new theoretical insights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性回归中的潜在权重和隐含因果设计
线性回归何时能估计准实验中的因果效应?本文提供了一种通用诊断方法,用于评估特定数据集上的特定线性回归规范是否允许基于设计的解释。为此,我们定义了一个潜在权重的概念,它包含了给定回归对未观察到的潜在结果所做的反事实决定。如果规范确实允许这样的解释,那么该诊断就能找到单位水平的治疗分配概率向量--我们称之为隐含设计--在此向量下,回归估计出了因果效应。知道了隐含设计和估计值,就增加了透明度,可以进一步进行疯狂检查,并为基于设计的统计推断打开了大门。当应用于因果推断文献中研究的回归规范时,我们的框架恢复并扩展了现有的理论结果。当应用于现有因果推断文献中未涉及的广泛使用的规范时,我们的框架产生了新的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1