Yield curve trading strategies exploiting sentiment data

IF 3.8 3区 经济学 Q1 BUSINESS, FINANCE North American Journal of Economics and Finance Pub Date : 2024-07-26 DOI:10.1016/j.najef.2024.102226
Francesco Audrino, Jan Serwart
{"title":"Yield curve trading strategies exploiting sentiment data","authors":"Francesco Audrino,&nbsp;Jan Serwart","doi":"10.1016/j.najef.2024.102226","DOIUrl":null,"url":null,"abstract":"<div><p>This paper builds upon previous research findings that show macro sentiment data-augmented models are better at predicting the yield curve. We extend the dynamic Nelson–Siegel model with macro sentiment data from either Twitter or RavenPack. Vector autogressive (VAR) models and Markov-switching VAR models are used to predict changes in the shape of the yield curve. We build bond butterfly trading strategies that exploit our yield curve shape change predictions. We find that the economic returns from our trading strategies based upon models exploiting macro sentiment data do not statistically significantly differ from those which do not rely on it.</p></div>","PeriodicalId":47831,"journal":{"name":"North American Journal of Economics and Finance","volume":"74 ","pages":"Article 102226"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1062940824001517/pdfft?md5=ddd2acdba26d544c1d5ef2719d088247&pid=1-s2.0-S1062940824001517-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Journal of Economics and Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1062940824001517","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper builds upon previous research findings that show macro sentiment data-augmented models are better at predicting the yield curve. We extend the dynamic Nelson–Siegel model with macro sentiment data from either Twitter or RavenPack. Vector autogressive (VAR) models and Markov-switching VAR models are used to predict changes in the shape of the yield curve. We build bond butterfly trading strategies that exploit our yield curve shape change predictions. We find that the economic returns from our trading strategies based upon models exploiting macro sentiment data do not statistically significantly differ from those which do not rely on it.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用情绪数据的收益率曲线交易策略
本文以之前的研究成果为基础,这些研究成果表明宏观情绪数据增强模型能更好地预测收益率曲线。我们利用 Twitter 或 RavenPack 中的宏观情绪数据对动态 Nelson-Siegel 模型进行了扩展。向量自回归 (VAR) 模型和马尔可夫切换 VAR 模型用于预测收益率曲线形状的变化。我们利用收益率曲线形状变化预测建立了债券蝶式交易策略。我们发现,基于宏观情绪数据模型的交易策略与不依赖宏观情绪数据的交易策略的经济回报在统计上没有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
8.30%
发文量
168
期刊介绍: The focus of the North-American Journal of Economics and Finance is on the economics of integration of goods, services, financial markets, at both regional and global levels with the role of economic policy in that process playing an important role. Both theoretical and empirical papers are welcome. Empirical and policy-related papers that rely on data and the experiences of countries outside North America are also welcome. Papers should offer concrete lessons about the ongoing process of globalization, or policy implications about how governments, domestic or international institutions, can improve the coordination of their activities. Empirical analysis should be capable of replication. Authors of accepted papers will be encouraged to supply data and computer programs.
期刊最新文献
Impact of climate change on dynamic tail-risk connectedness among stock market social sectors: Evidence from the US, Europe, and China Financial regulatory policy uncertainty: An informative predictor for financial industry stock returns Which opinion is more trustworthy: An analysts’ earnings forecast quality assessment framework based on machine learning A multifaceted graph-wise network analysis of sector-based financial instruments’ price-based discrepancies with diverse statistical interdependencies Volatility estimation through stochastic processes: Evidence from cryptocurrencies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1