Yi Chen;Tianyi Wu;Xiaobing Ma;Jingjing Wang;Rui Peng;Li Yang
{"title":"System Maintenance Optimization Under Structural Dependency: A Dynamic Grouping Approach","authors":"Yi Chen;Tianyi Wu;Xiaobing Ma;Jingjing Wang;Rui Peng;Li Yang","doi":"10.1109/JSYST.2024.3422284","DOIUrl":null,"url":null,"abstract":"Structural dependency, as widely existed in complex engineering equipment, refers to the structural intervention between components so that replacing a component requires the removal of others on its disassembly path. Naturally, it is cost-efficient to cluster maintenance jobs to share disassembly time and reduce system downtime. However, maintenance management by particularly considering the disassembly structure is rarely reported in the literature. To address such deficiency, we propose an innovative dependency-specific maintenance policy, which realizes the global union of “static” scheduled block maintenance (SBM) and “dynamic” opportunistic maintenance (OM). SBM coordinates preventive maintenance jobs in conjunction, which forms the basic policy framework. OM decides which components are opportunistically replaced in case of failure, which fine-tunes the framework to further exploit the dependency. Motivated by the fractal nature of disassembly structure, we develop a dynamic-programming-based optimization approach, which enables: 1) the joint optimization of model parameters in a sequential manner, and 2) an efficient optimization applicable to large-scale equipment. We demonstrate the model through a case study in the maintenance management of high-speed train bogies. The results show that the proposed policy significantly promotes system availability by coordinating replacement intervals within the same disassembly subtree, and effectively reducing downtime by integrating SBM with OM.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1605-1616"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614715/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural dependency, as widely existed in complex engineering equipment, refers to the structural intervention between components so that replacing a component requires the removal of others on its disassembly path. Naturally, it is cost-efficient to cluster maintenance jobs to share disassembly time and reduce system downtime. However, maintenance management by particularly considering the disassembly structure is rarely reported in the literature. To address such deficiency, we propose an innovative dependency-specific maintenance policy, which realizes the global union of “static” scheduled block maintenance (SBM) and “dynamic” opportunistic maintenance (OM). SBM coordinates preventive maintenance jobs in conjunction, which forms the basic policy framework. OM decides which components are opportunistically replaced in case of failure, which fine-tunes the framework to further exploit the dependency. Motivated by the fractal nature of disassembly structure, we develop a dynamic-programming-based optimization approach, which enables: 1) the joint optimization of model parameters in a sequential manner, and 2) an efficient optimization applicable to large-scale equipment. We demonstrate the model through a case study in the maintenance management of high-speed train bogies. The results show that the proposed policy significantly promotes system availability by coordinating replacement intervals within the same disassembly subtree, and effectively reducing downtime by integrating SBM with OM.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.