Towards unveiling the large-scale nature of gravity with the wavelet scattering transform

Georgios Valogiannis, Francisco Villaescusa-Navarro, Marco Baldi
{"title":"Towards unveiling the large-scale nature of gravity with the wavelet scattering transform","authors":"Georgios Valogiannis, Francisco Villaescusa-Navarro, Marco Baldi","doi":"arxiv-2407.18647","DOIUrl":null,"url":null,"abstract":"We present the first application of the Wavelet Scattering Transform (WST) in\norder to constrain the nature of gravity using the three-dimensional (3D)\nlarge-scale structure of the universe. Utilizing the Quijote-MG N-body\nsimulations, we can reliably model the 3D matter overdensity field for the f(R)\nHu-Sawicki modified gravity (MG) model down to $k_{\\rm max}=0.5$ h/Mpc.\nCombining these simulations with the Quijote $\\nu$CDM collection, we then\nconduct a Fisher forecast of the marginalized constraints obtained on gravity\nusing the WST coefficients and the matter power spectrum at redshift z=0. Our\nresults demonstrate that the WST substantially improves upon the 1$\\sigma$\nerror obtained on the parameter that captures deviations from standard General\nRelativity (GR), yielding a tenfold improvement compared to the corresponding\nmatter power spectrum result. At the same time, the WST also enhances the\nprecision on the $\\Lambda$CDM parameters and the sum of neutrino masses, by\nfactors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite\nthe overall reduction in the WST performance when we focus on larger scales, it\nstill provides a relatively $4.5\\times$ tighter 1$\\sigma$ error for the MG\nparameter at $k_{\\rm max}=0.2$ h/Mpc, highlighting its great sensitivity to the\nunderlying gravity theory. This first proof-of-concept study reaffirms the\nconstraining properties of the WST technique and paves the way for exciting\nfuture applications in order to perform precise large-scale tests of gravity\nwith the new generation of cutting-edge cosmological data.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first application of the Wavelet Scattering Transform (WST) in order to constrain the nature of gravity using the three-dimensional (3D) large-scale structure of the universe. Utilizing the Quijote-MG N-body simulations, we can reliably model the 3D matter overdensity field for the f(R) Hu-Sawicki modified gravity (MG) model down to $k_{\rm max}=0.5$ h/Mpc. Combining these simulations with the Quijote $\nu$CDM collection, we then conduct a Fisher forecast of the marginalized constraints obtained on gravity using the WST coefficients and the matter power spectrum at redshift z=0. Our results demonstrate that the WST substantially improves upon the 1$\sigma$ error obtained on the parameter that captures deviations from standard General Relativity (GR), yielding a tenfold improvement compared to the corresponding matter power spectrum result. At the same time, the WST also enhances the precision on the $\Lambda$CDM parameters and the sum of neutrino masses, by factors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite the overall reduction in the WST performance when we focus on larger scales, it still provides a relatively $4.5\times$ tighter 1$\sigma$ error for the MG parameter at $k_{\rm max}=0.2$ h/Mpc, highlighting its great sensitivity to the underlying gravity theory. This first proof-of-concept study reaffirms the constraining properties of the WST technique and paves the way for exciting future applications in order to perform precise large-scale tests of gravity with the new generation of cutting-edge cosmological data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用小波散射变换揭示万有引力的大尺度性质
我们首次应用小波散射变换(WST),利用宇宙的三维(3D)大尺度结构来约束引力的性质。利用Quijote-MG N-bodysimulations,我们可以可靠地模拟f(R)Hu-Sawicki修正引力(MG)模型的三维物质超密度场,最小可达$k_{\rm max}=0.5$ h/Mpc.将这些模拟与Quijote $\nu$CDM 集合相结合,我们就可以利用WST系数和红移z=0时的物质功率谱对引力的边际约束进行费雪预测。我们的结果表明,在捕捉偏离标准广义相对论(GR)的参数上,WST大大改善了1$\sigma$的误差,与相应的物质功率谱结果相比,WST改善了10倍。与此同时,WST还提高了$\Lambda$CDM参数和中微子质量总和的精度,与物质功率谱相比分别提高了1.2-3.4倍。尽管当我们聚焦于更大尺度时,WST的整体性能有所下降,但它仍然在$k_{\rm max}=0.2$ h/Mpc时为MG参数提供了相对较小的4.5/times$ 1$\sigma$误差,突出了它对基础引力理论的极大敏感性。这项首次概念验证研究再次证实了WST技术的约束特性,并为今后的应用铺平了道路,以便利用新一代尖端宇宙学数据对引力进行精确的大尺度检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1