Fluidic control programming for 3D magnetic soft metamaterials with reconfigurable mechanical behaviors

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-07-29 DOI:10.1016/j.xcrp.2024.102125
{"title":"Fluidic control programming for 3D magnetic soft metamaterials with reconfigurable mechanical behaviors","authors":"","doi":"10.1016/j.xcrp.2024.102125","DOIUrl":null,"url":null,"abstract":"<p>Active mechanical metamaterials are an attractive proposition for soft robotics, electronic devices, and biomedical devices. However, the utilization of their uncommon physical and mechanical behaviors remains underexplored because existing fabrication processes limit the decoupling of structural frameworks from the responsive mechanisms. Here, we propose a multi-step fluidic control programming strategy by fabricating three-dimensional (3D) magnetic soft materials (MSMs) with reconfigurable mechanical metamaterial behaviors, enabling magnetic-field-driven alteration between three different geometry modes in a single structure. The MSM lattices exhibit fast 3D transitions between positive (ν<sub>max</sub> = 3.41) and negative (ν<sub>max</sub> = −2.64) Poisson’s ratios. We then create MSMs with reconfigurable orthotropic behaviors, which demonstrate the positive and negative Poisson’s effect in perpendicular planes. In further demonstrations, the fast and wireless response is validated by manipulating falling loads and switching the states of electrical circuits. This research provides a controllable workflow for future magnetic soft metamaterials.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102125","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Active mechanical metamaterials are an attractive proposition for soft robotics, electronic devices, and biomedical devices. However, the utilization of their uncommon physical and mechanical behaviors remains underexplored because existing fabrication processes limit the decoupling of structural frameworks from the responsive mechanisms. Here, we propose a multi-step fluidic control programming strategy by fabricating three-dimensional (3D) magnetic soft materials (MSMs) with reconfigurable mechanical metamaterial behaviors, enabling magnetic-field-driven alteration between three different geometry modes in a single structure. The MSM lattices exhibit fast 3D transitions between positive (νmax = 3.41) and negative (νmax = −2.64) Poisson’s ratios. We then create MSMs with reconfigurable orthotropic behaviors, which demonstrate the positive and negative Poisson’s effect in perpendicular planes. In further demonstrations, the fast and wireless response is validated by manipulating falling loads and switching the states of electrical circuits. This research provides a controllable workflow for future magnetic soft metamaterials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可重构机械行为的三维磁性软超材料的流体控制编程
对于软机器人、电子设备和生物医学设备而言,主动机械超材料是一个极具吸引力的命题。然而,由于现有的制造工艺限制了结构框架与响应机制的解耦,对其不常见的物理和机械行为的利用仍未得到充分探索。在这里,我们提出了一种多步骤流体控制编程策略,通过制造具有可重新配置机械超材料行为的三维(3D)磁性软材料(MSM),在单一结构中实现磁场驱动的三种不同几何模式之间的改变。MSM 晶格在正(νmax = 3.41)和负(νmax = -2.64)泊松比之间表现出快速的三维转换。然后,我们创建了具有可重构各向同性行为的 MSM,在垂直平面上展示了正负泊松效应。在进一步的演示中,我们通过操纵下落负载和切换电路状态,验证了快速无线响应。这项研究为未来的磁性软超材料提供了一个可控的工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1