Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich
{"title":"Optimization of the Process Parameters of Catalytic Oxygen Removal over CoMo/γ-Al2O3 Using Design-of-Experiment Approaches","authors":"Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich","doi":"10.1002/cite.202400025","DOIUrl":null,"url":null,"abstract":"<p>Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H<sub>2</sub>S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H<sub>2</sub>S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H<sub>2</sub>S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H<sub>2</sub>S content favors a high sulfidation degree resulting in the formation of active sites.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1230-1236"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H2S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H2S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H2S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H2S content favors a high sulfidation degree resulting in the formation of active sites.
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!