Ab initio methods for superconductivity

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Nature Reviews Physics Pub Date : 2024-07-29 DOI:10.1038/s42254-024-00738-9
Camilla Pellegrini, Antonio Sanna
{"title":"Ab initio methods for superconductivity","authors":"Camilla Pellegrini, Antonio Sanna","doi":"10.1038/s42254-024-00738-9","DOIUrl":null,"url":null,"abstract":"Modern ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. In this Technical Review, we analyse Eliashberg theory, density functional theory for superconductors as well as McMillan and Allen–Dynes equations, providing a summary of the underlying approximations and capabilities. We highlight in simple terms and with examples the many sources of error, which may lead to inaccurate predictions, including limitations on the applicability of the methods, subtle convergence aspects and improper practices often adopted to simplify the treatment of Coulomb interactions. Additionally, we compare the accuracy of the various methods by computing the critical temperature (Tc) for a broad range of superconductors and benchmarking against experimental results. We find that even the simple McMillan and Allen–Dynes formulas give Tc distributions centred on the experimental values. The Eliashberg theory and density functional theory for superconductors yield more peaked distributions, strongly reducing the possibility of incorrect predictions. Ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. This Technical Review provides an analysis of the different theories, highlighting the main sources of error, either due to inherent approximations or arising from improper practices, and provides a comparison against experimental results.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00738-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Modern ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. In this Technical Review, we analyse Eliashberg theory, density functional theory for superconductors as well as McMillan and Allen–Dynes equations, providing a summary of the underlying approximations and capabilities. We highlight in simple terms and with examples the many sources of error, which may lead to inaccurate predictions, including limitations on the applicability of the methods, subtle convergence aspects and improper practices often adopted to simplify the treatment of Coulomb interactions. Additionally, we compare the accuracy of the various methods by computing the critical temperature (Tc) for a broad range of superconductors and benchmarking against experimental results. We find that even the simple McMillan and Allen–Dynes formulas give Tc distributions centred on the experimental values. The Eliashberg theory and density functional theory for superconductors yield more peaked distributions, strongly reducing the possibility of incorrect predictions. Ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. This Technical Review provides an analysis of the different theories, highlighting the main sources of error, either due to inherent approximations or arising from improper practices, and provides a comparison against experimental results.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超导的 Ab initio 方法
现代超导自证理论可以描述和预测声子介导的超导体。在本技术综述中,我们分析了埃利亚什伯格理论、超导体密度泛函理论以及麦克米兰方程和艾伦-戴恩斯方程,总结了基本的近似值和能力。我们用简洁的语言和实例强调了可能导致预测不准确的许多误差来源,包括方法适用性的限制、微妙的收敛方面以及为简化库仑相互作用处理而经常采用的不当做法。此外,我们还通过计算各种超导体的临界温度 (Tc) 并以实验结果为基准,比较了各种方法的准确性。我们发现,即使是简单的麦克米兰公式和艾伦-戴恩斯公式也能给出以实验值为中心的 Tc 分布。超导体的埃利亚什伯格理论和密度泛函理论得出了更多的峰值分布,大大降低了预测错误的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
期刊最新文献
Science should inspire, but visions need nuance The AI revolution is always just out of reach The promise and peril of sociotechnical visions of the future Publisher Correction: Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers Physics and the empirical gap of trustworthy AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1