Sudhanva Madhusudan, Enrica Epifano, Jérôme Favergeon, Tom Sanviemvongsak, David Maréchal, Daniel Monceau
{"title":"High Temperature Intergranular Oxidation of Nickel Based Superalloy Inconel 718","authors":"Sudhanva Madhusudan, Enrica Epifano, Jérôme Favergeon, Tom Sanviemvongsak, David Maréchal, Daniel Monceau","doi":"10.1007/s11085-024-10260-z","DOIUrl":null,"url":null,"abstract":"<div><p>Intergranular oxidation (IGO) of the Ni-based superalloy Inconel 718 was studied at 650 °C, 700 °C and 900 °C. The oxidized samples were characterized by <i>X</i>-ray diffraction and scanning electron microscopy. For all the studied temperatures, the external scale was mainly composed of Cr<sub>2</sub>O<sub>3</sub>, while the oxides along the grain boundaries were rich in Al and, to a minor extent, Ti. This was consistent with thermodynamic computations. The time evolution of the maximum depth of IGO was found to be parabolic with an apparent activation energy of 164 kJ/mol. The results of this study confirm with three temperatures that IGO kinetics can be described using an extension of the Wagner’s theory of internal oxidation, as recently suggested in the literature at 850 °C. According to this description, the mechanisms controlling the IGO kinetics of Inconel 718 are the aluminum diffusion in the alloy matrix and the oxygen diffusion along the interface between the alloy matrix and the oxidized grain boundary.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 5","pages":"873 - 884"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10260-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10260-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Intergranular oxidation (IGO) of the Ni-based superalloy Inconel 718 was studied at 650 °C, 700 °C and 900 °C. The oxidized samples were characterized by X-ray diffraction and scanning electron microscopy. For all the studied temperatures, the external scale was mainly composed of Cr2O3, while the oxides along the grain boundaries were rich in Al and, to a minor extent, Ti. This was consistent with thermodynamic computations. The time evolution of the maximum depth of IGO was found to be parabolic with an apparent activation energy of 164 kJ/mol. The results of this study confirm with three temperatures that IGO kinetics can be described using an extension of the Wagner’s theory of internal oxidation, as recently suggested in the literature at 850 °C. According to this description, the mechanisms controlling the IGO kinetics of Inconel 718 are the aluminum diffusion in the alloy matrix and the oxygen diffusion along the interface between the alloy matrix and the oxidized grain boundary.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.