Yiyi Xiong, Cheryl McCarthy, Jacob Humpal, Cassandra Percy
{"title":"Near-infrared spectroscopy and deep neural networks for early common root rot detection in wheat from multi-season trials","authors":"Yiyi Xiong, Cheryl McCarthy, Jacob Humpal, Cassandra Percy","doi":"10.1002/agj2.21648","DOIUrl":null,"url":null,"abstract":"<p>In Australia, the soil-borne disease common root rot (<i>Bipolaris sorokiniana</i>) (CRR) in wheat (<i>Triticum aestivum</i> L.) leads to substantial yield losses, yet has limited visible aboveground symptoms, making detection and identification labor intensive. Near-infrared (NIR) spectroscopy offers an early potential identification solution for CRR in wheat and has previously been reported with success for crop disease detection. This study investigated the ability of nondestructive NIR spectroscopy in combination with deep neural networks (DNN), logistic regression (LR), and principal component analysis combined with support vector machines (PCA-SVM) for early-stage CRR detection in wheat. NIR spectra of five different wheat varieties with varying resistance to CRR were collected in two seasons of glasshouse and three seasons of field trials using a portable spectrometer. Results demonstrated that DNN outperformed LR and PCA-SVM, achieving 66%–91% average classification accuracy in glasshouse trials and an average accuracy of 73% with up to 87% in field trials, effectively distinguishing inoculated and non-inoculated wheat plants from seedling to anthesis stages. Validation with a third season of field data achieved an average of 77% accuracy for the most susceptible variety during the stem elongation stage. NIR reflectance within 1600–1700 nm was identified as most important for estimating CRR presence, with initial detection occurring 35 days after sowing (DAS) in the glasshouse and 46 DAS in the field. In conclusion, a NIR spectrometer with a DNN model successfully performed disease classification, with the potential as a portable early disease detection tool to assist farm management decisions.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21648","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21648","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
In Australia, the soil-borne disease common root rot (Bipolaris sorokiniana) (CRR) in wheat (Triticum aestivum L.) leads to substantial yield losses, yet has limited visible aboveground symptoms, making detection and identification labor intensive. Near-infrared (NIR) spectroscopy offers an early potential identification solution for CRR in wheat and has previously been reported with success for crop disease detection. This study investigated the ability of nondestructive NIR spectroscopy in combination with deep neural networks (DNN), logistic regression (LR), and principal component analysis combined with support vector machines (PCA-SVM) for early-stage CRR detection in wheat. NIR spectra of five different wheat varieties with varying resistance to CRR were collected in two seasons of glasshouse and three seasons of field trials using a portable spectrometer. Results demonstrated that DNN outperformed LR and PCA-SVM, achieving 66%–91% average classification accuracy in glasshouse trials and an average accuracy of 73% with up to 87% in field trials, effectively distinguishing inoculated and non-inoculated wheat plants from seedling to anthesis stages. Validation with a third season of field data achieved an average of 77% accuracy for the most susceptible variety during the stem elongation stage. NIR reflectance within 1600–1700 nm was identified as most important for estimating CRR presence, with initial detection occurring 35 days after sowing (DAS) in the glasshouse and 46 DAS in the field. In conclusion, a NIR spectrometer with a DNN model successfully performed disease classification, with the potential as a portable early disease detection tool to assist farm management decisions.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.