Global optimization in variational quantum algorithms via dynamic tunneling method

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY New Journal of Physics Pub Date : 2024-08-01 DOI:10.1088/1367-2630/ad64fc
Seung Park, Kyunghyun Baek, Seungjin Lee, Mahn-Soo Choi
{"title":"Global optimization in variational quantum algorithms via dynamic tunneling method","authors":"Seung Park, Kyunghyun Baek, Seungjin Lee, Mahn-Soo Choi","doi":"10.1088/1367-2630/ad64fc","DOIUrl":null,"url":null,"abstract":"We present a global optimization routine for the variational quantum algorithms, which utilizes the dynamic tunneling flow. Originally designed to leverage information gathered by a gradient-based optimizer around local minima, we adapt the conventional dynamic tunneling flow to exploit the distance measure of quantum states, resolving issues of extrinsic degeneracy arising from the parametrization of quantum states. Our global optimization algorithm is applied to the variational quantum eigensolver for the transverse-field Ising model to demonstrate the performance of our routine while comparing it with the conventional dynamic tunneling method, which is based on the Euclidean distance measure on the parameter space.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad64fc","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a global optimization routine for the variational quantum algorithms, which utilizes the dynamic tunneling flow. Originally designed to leverage information gathered by a gradient-based optimizer around local minima, we adapt the conventional dynamic tunneling flow to exploit the distance measure of quantum states, resolving issues of extrinsic degeneracy arising from the parametrization of quantum states. Our global optimization algorithm is applied to the variational quantum eigensolver for the transverse-field Ising model to demonstrate the performance of our routine while comparing it with the conventional dynamic tunneling method, which is based on the Euclidean distance measure on the parameter space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过动态隧道法实现变量子算法中的全局优化
我们提出了一种利用动态隧道流的变分量子算法全局优化程序。动态隧道流最初的设计目的是利用基于梯度的优化器在局部极小值周围收集的信息,我们对传统的动态隧道流进行了调整,以利用量子态的距离度量,解决量子态参数化引起的外在退化问题。我们的全局优化算法被应用于横向场伊辛模型的变分量子求解器,以证明我们的程序的性能,同时与基于参数空间欧氏距离度量的传统动态隧道方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
期刊最新文献
Higher-order topological phase with subsystem symmetries Engineering quasi-bound states in the continuum in asymmetric waveguide gratings Bipartite OTOC in open quantum systems: information scrambling and irreversibility Coherent electron phase-space manipulation by combined elastic and inelastic light-electron scattering Design principles for > 90 % ...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1