Engineering quasi-bound states in the continuum in asymmetric waveguide gratings

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-17 DOI:10.1088/1367-2630/ad787d
Torgom Yezekyan, Sergejs Boroviks, Olivier J F Martin and Sergey I Bozhevolnyi
{"title":"Engineering quasi-bound states in the continuum in asymmetric waveguide gratings","authors":"Torgom Yezekyan, Sergejs Boroviks, Olivier J F Martin and Sergey I Bozhevolnyi","doi":"10.1088/1367-2630/ad787d","DOIUrl":null,"url":null,"abstract":"The occurrence of quasi-bound states in the continuum (qBIC) in all-dielectric asymmetric grating waveguide couplers with different degrees of asymmetry under normal light incidence is analysed from the viewpoint of identifying the most promising configuration for realizing the highest quality (Q) factor under the condition of utmost efficiency (i.e. total extinction). Considering asymmetric gratings produced by altering every Nth ridge of a conventional (symmetric) grating coupler, we analyse different regimes corresponding to the interplay between diffractive coupling to waveguide modes and band gap effects caused by the Bragg reflection of waveguide modes. The symmetric and double- and triple-period asymmetric grating couplers are considered in detail for the same unperturbed two-mode waveguide and the grating coupler parameters that ensure the occurrence of total transmission extinction at the same wavelengths. It is found that the highest Q is expected for the double-period asymmetric grating, a feature that we explain by the circumstance that the first-order distributed Bragg resonator (DBR) is realized for this configuration while, for other configurations, the second-order DBR comes into play. Experiments conducted at telecom wavelengths for all three cases using thin-film Al2O3-on-MgF2 waveguides and Ge diffraction gratings exhibit the transmission spectra in qualitative agreement with numerical simulations. Since the occurrence of considered qBIC can be analytically predicted, the results obtained may serve as reliable guidelines for intelligent engineering of asymmetric grating waveguide couplers enabling highly resonant, linear and nonlinear, electromagnetic interactions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad787d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of quasi-bound states in the continuum (qBIC) in all-dielectric asymmetric grating waveguide couplers with different degrees of asymmetry under normal light incidence is analysed from the viewpoint of identifying the most promising configuration for realizing the highest quality (Q) factor under the condition of utmost efficiency (i.e. total extinction). Considering asymmetric gratings produced by altering every Nth ridge of a conventional (symmetric) grating coupler, we analyse different regimes corresponding to the interplay between diffractive coupling to waveguide modes and band gap effects caused by the Bragg reflection of waveguide modes. The symmetric and double- and triple-period asymmetric grating couplers are considered in detail for the same unperturbed two-mode waveguide and the grating coupler parameters that ensure the occurrence of total transmission extinction at the same wavelengths. It is found that the highest Q is expected for the double-period asymmetric grating, a feature that we explain by the circumstance that the first-order distributed Bragg resonator (DBR) is realized for this configuration while, for other configurations, the second-order DBR comes into play. Experiments conducted at telecom wavelengths for all three cases using thin-film Al2O3-on-MgF2 waveguides and Ge diffraction gratings exhibit the transmission spectra in qualitative agreement with numerical simulations. Since the occurrence of considered qBIC can be analytically predicted, the results obtained may serve as reliable guidelines for intelligent engineering of asymmetric grating waveguide couplers enabling highly resonant, linear and nonlinear, electromagnetic interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称波导光栅连续体中的工程准约束态
我们分析了全介质非对称光栅波导耦合器在正常光入射条件下不同不对称程度的连续体中准束缚态(qBIC)的发生,目的是找出在最高效率(即全消光)条件下实现最高质量(Q)因子的最有前途的配置。考虑到非对称光栅是通过改变传统(对称)光栅耦合器的每N个脊而产生的,我们分析了与波导模式的衍射耦合和波导模式的布拉格反射所引起的带隙效应之间的相互作用相对应的不同状态。我们详细研究了对称光栅耦合器、双周期和三周期非对称光栅耦合器,对于相同的无扰动双模波导和光栅耦合器参数,这些参数可确保在相同波长上发生全透射消光。我们发现,双周期不对称光栅的 Q 值最高,这是因为这种配置采用了一阶分布式布拉格共振器(DBR),而其他配置则采用了二阶分布式布拉格共振器。在电信波长下,使用 Al2O3-on-MgF2 薄膜波导和 Ge 衍射光栅对所有三种情况进行了实验,结果显示传输光谱与数值模拟结果基本一致。由于可以分析预测所考虑的 qBIC 的发生,因此所获得的结果可作为非对称光栅波导耦合器智能工程的可靠指南,从而实现高谐振、线性和非线性电磁相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1