Jiadong Dan, Cheng Zhang, Xiaoxu Zhao, N. Duane Loh
{"title":"Symmetry quantification and segmentation in STEM imaging through Zernike moments","authors":"Jiadong Dan, Cheng Zhang, Xiaoxu Zhao, N. Duane Loh","doi":"10.1088/1674-1056/ad51f4","DOIUrl":null,"url":null,"abstract":"We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy (STEM) images, aimed at improving structural analysis of materials at the atomic scale. This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects. We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS<sub>2</sub>, enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects. This approach enhances the analysis of structural variations in crystalline materials, marking a notable advancement in the characterization of structures in materials science.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"73 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad51f4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy (STEM) images, aimed at improving structural analysis of materials at the atomic scale. This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects. We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS2, enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects. This approach enhances the analysis of structural variations in crystalline materials, marking a notable advancement in the characterization of structures in materials science.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.