{"title":"Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction","authors":"Zhiyao Hu, Qixian Li, Xuanchen Zhang, He-Bin Zhang, Long-Gang Huang, Yong-Chun Liu","doi":"10.1088/1674-1056/ad4ff7","DOIUrl":null,"url":null,"abstract":"Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science. Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction, which could be described by the Lipkin–Meshkov–Glick (LMG) model. We optimize the squeezing process, encoding process, and anti-squeezing process, finding that the two particular cases of the LMG model, one-axis twisting and two-axis twisting outperform in robustness and precision, respectively. Moreover, we propose a Floquet driving method to realize equivalent time reverse in the atomic system, which leads to high performance in precision, robustness, and operability. Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"46 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad4ff7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science. Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction, which could be described by the Lipkin–Meshkov–Glick (LMG) model. We optimize the squeezing process, encoding process, and anti-squeezing process, finding that the two particular cases of the LMG model, one-axis twisting and two-axis twisting outperform in robustness and precision, respectively. Moreover, we propose a Floquet driving method to realize equivalent time reverse in the atomic system, which leads to high performance in precision, robustness, and operability. Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.