{"title":"Numerical Simulation of Multi-physics Characteristics in Tundish with Channel Induction Heating","authors":"Bin Yang, Shifu Chen, Hong Lei, Dazhao Gou","doi":"10.1007/s11663-024-03211-1","DOIUrl":null,"url":null,"abstract":"<p>To investigate the qualitative and quantitative effects of flow rate on fluid dynamics within a tundish using channel induction heating, a mathematical model was developed to reflect the macroscopic transport phenomena. The simulation results show that as inlet velocities increased from 0.3 to 0.9, the ratios of plug zone volume to total volume, dead zone volume to total volume, plug zone to dead zone, and plug zone to mixed zone consistently fell within the ranges of 0.257 to 0.263, 0.118 to 0.119, 2.152 to 2.231, and 0.412 to 0.427. Concurrently, the inclusion removal rate in the tundish's dead zone under channel induction heating increased with the inlet velocity. Additionally, analysis of the mean characteristics in the tundish system reveals that the mean residence time linearly decreases with increasing mean flow temperature and linearly increases with the inlet velocity. Furthermore, the inclusion removal rate linearly increases with the inlet velocity. This work enables precise quantitative and qualitative predictions and analyses of physical parameters in the electromagnetic induction heating tundish at various casting speeds, providing an efficient method for evaluating and optimizing the multi-physical fields within the metallurgical container.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03211-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the qualitative and quantitative effects of flow rate on fluid dynamics within a tundish using channel induction heating, a mathematical model was developed to reflect the macroscopic transport phenomena. The simulation results show that as inlet velocities increased from 0.3 to 0.9, the ratios of plug zone volume to total volume, dead zone volume to total volume, plug zone to dead zone, and plug zone to mixed zone consistently fell within the ranges of 0.257 to 0.263, 0.118 to 0.119, 2.152 to 2.231, and 0.412 to 0.427. Concurrently, the inclusion removal rate in the tundish's dead zone under channel induction heating increased with the inlet velocity. Additionally, analysis of the mean characteristics in the tundish system reveals that the mean residence time linearly decreases with increasing mean flow temperature and linearly increases with the inlet velocity. Furthermore, the inclusion removal rate linearly increases with the inlet velocity. This work enables precise quantitative and qualitative predictions and analyses of physical parameters in the electromagnetic induction heating tundish at various casting speeds, providing an efficient method for evaluating and optimizing the multi-physical fields within the metallurgical container.