Study of chalcogenide-based metal perovskites BaZrX3 (X = S and Se): DFT insight into fundamental properties for sustainable energy generation using AMPS-1D
{"title":"Study of chalcogenide-based metal perovskites BaZrX3 (X = S and Se): DFT insight into fundamental properties for sustainable energy generation using AMPS-1D","authors":"Naincy Pandit, Rashmi Singh, Peeyush Kumar Kamlesh, Nitin Kumar, Pawan Sharma, Sarita Kumari, Tanuj Kumar, Samah Al-Qaisi, Ajay Singh Verma","doi":"10.1007/s10825-024-02201-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Emerging materials inspire us to study one of the perovskite chalcogens made from alkaline-earth-metals (Baryum). Here, we have determined some fundamental properties and explained their applicability in energy conversion device fabrication by first principles calculation. These materials show direct bandgap for BaZrS<sub>3</sub>and BaZrSe<sub>3</sub> 1.83 eV and 1.3 eV (at symmetry pointΓ), respectively; Elastic parameters like as Pugh ratio B/G ~ 1.75 and 1.78 for BaZrS<sub>3</sub>and BaZrSe<sub>3</sub>, respectively and have broader visible absorption spectrum with mechanically stable. The absorption coefficient is greater than 105 cm<sup>−1</sup> at photon energy 1.83 eV for BZS and 1.3 eV for BZSe. For photovoltaic application, electron transport layer (ETL) has been varied, while putting hole transport layer (HTL) for the findings of efficiency, and ZnO is proven with 21.97% efficiency. This emerging study shows that these materials may be used as an alert substance in energy conversion device fabrications and the proposed outcomes are in good acceptance with the experimental and other theoretical data. As per the optical and thermoelectric parameters of these materials, we infer that both are promising candidates in energy conversion devices.</p><h3>Methods</h3><p>Fundamental properties based on the full-potential linearized augmented plane wave (FP-LAPW) method, this computation was performed using the WIEN2k simulation code. In order to calculate the photovoltaic properties of semiconducting perovskites, it is one of the most reliable methods. For application point of view, the Microelectronic and Photonic Structures-one-dimensional (AMPS-1D) analysis tool has been used for simulation of photovoltaic devices. There are several critical absorbance parameters, including band gap, defect density, thickness, concentration of doping, and operating temperature, that have been taken into consideration. </p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 5","pages":"1014 - 1028"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02201-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Emerging materials inspire us to study one of the perovskite chalcogens made from alkaline-earth-metals (Baryum). Here, we have determined some fundamental properties and explained their applicability in energy conversion device fabrication by first principles calculation. These materials show direct bandgap for BaZrS3and BaZrSe3 1.83 eV and 1.3 eV (at symmetry pointΓ), respectively; Elastic parameters like as Pugh ratio B/G ~ 1.75 and 1.78 for BaZrS3and BaZrSe3, respectively and have broader visible absorption spectrum with mechanically stable. The absorption coefficient is greater than 105 cm−1 at photon energy 1.83 eV for BZS and 1.3 eV for BZSe. For photovoltaic application, electron transport layer (ETL) has been varied, while putting hole transport layer (HTL) for the findings of efficiency, and ZnO is proven with 21.97% efficiency. This emerging study shows that these materials may be used as an alert substance in energy conversion device fabrications and the proposed outcomes are in good acceptance with the experimental and other theoretical data. As per the optical and thermoelectric parameters of these materials, we infer that both are promising candidates in energy conversion devices.
Methods
Fundamental properties based on the full-potential linearized augmented plane wave (FP-LAPW) method, this computation was performed using the WIEN2k simulation code. In order to calculate the photovoltaic properties of semiconducting perovskites, it is one of the most reliable methods. For application point of view, the Microelectronic and Photonic Structures-one-dimensional (AMPS-1D) analysis tool has been used for simulation of photovoltaic devices. There are several critical absorbance parameters, including band gap, defect density, thickness, concentration of doping, and operating temperature, that have been taken into consideration.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.