{"title":"Data Filtering-Based Maximum Likelihood Gradient-Based Iterative Algorithm for Input Nonlinear Box–Jenkins Systems with Saturation Nonlinearity","authors":"Yamin Fan, Ximei Liu, Meihang Li","doi":"10.1007/s00034-024-02777-0","DOIUrl":null,"url":null,"abstract":"<p>Saturation nonlinearity exists widely in various practical control systems. Modeling and parameter estimation of systems with saturation nonlinearity are of great importance for analyzing their characteristics and controller design. This paper focuses on the identification issue of the input nonlinear Box–Jenkins systems with saturation nonlinearity. The input saturation nonlinearity is presented as a linear parametric expression through the application of a switching function, then the identification model of the system is derived by using the key term separation technique. Based on this model and the data filtering technique, the filtering identification model of the system is given by changing the system structure without changing the relationship between the input and output, which can reduce the interference of the colored noise and improve the identification accuracy. Then a data filtering-based maximum likelihood gradient-based iterative algorithm is proposed to estimate the unknown parameters. The maximum likelihood gradient-based iterative algorithm is provided for comparison. The feasibility and superiority of the proposed approach are emphasized by a simulation example.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"96 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02777-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Saturation nonlinearity exists widely in various practical control systems. Modeling and parameter estimation of systems with saturation nonlinearity are of great importance for analyzing their characteristics and controller design. This paper focuses on the identification issue of the input nonlinear Box–Jenkins systems with saturation nonlinearity. The input saturation nonlinearity is presented as a linear parametric expression through the application of a switching function, then the identification model of the system is derived by using the key term separation technique. Based on this model and the data filtering technique, the filtering identification model of the system is given by changing the system structure without changing the relationship between the input and output, which can reduce the interference of the colored noise and improve the identification accuracy. Then a data filtering-based maximum likelihood gradient-based iterative algorithm is proposed to estimate the unknown parameters. The maximum likelihood gradient-based iterative algorithm is provided for comparison. The feasibility and superiority of the proposed approach are emphasized by a simulation example.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.