Practical object and flow structure segmentation using artificial intelligence

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2024-07-30 DOI:10.1007/s00348-024-03852-7
Ali R. Khojasteh, Willem van de Water, Jerry Westerweel
{"title":"Practical object and flow structure segmentation using artificial intelligence","authors":"Ali R. Khojasteh,&nbsp;Willem van de Water,&nbsp;Jerry Westerweel","doi":"10.1007/s00348-024-03852-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores integrating artificial intelligence (AI) segmentation models, particularly the Segment Anything Model (SAM), into fluid mechanics experiments. SAM’s architecture, comprising an image encoder, prompt encoder, and mask decoder, is investigated for its application in detecting and segmenting objects and flow structures. Additionally, we explore the integration of natural language prompts, such as BERT, to enhance SAM’s performance in segmenting specific objects. Through case studies, we found that SAM is robust in object detection in fluid experiments. However, segmentations related to flow properties, such as scalar turbulence and bubbly flows, require fine-tuning. To facilitate the application, we have established a repository (https://github.com/AliRKhojasteh/Flow_segmentation) where models and usage examples can be accessed.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03852-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03852-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores integrating artificial intelligence (AI) segmentation models, particularly the Segment Anything Model (SAM), into fluid mechanics experiments. SAM’s architecture, comprising an image encoder, prompt encoder, and mask decoder, is investigated for its application in detecting and segmenting objects and flow structures. Additionally, we explore the integration of natural language prompts, such as BERT, to enhance SAM’s performance in segmenting specific objects. Through case studies, we found that SAM is robust in object detection in fluid experiments. However, segmentations related to flow properties, such as scalar turbulence and bubbly flows, require fine-tuning. To facilitate the application, we have established a repository (https://github.com/AliRKhojasteh/Flow_segmentation) where models and usage examples can be accessed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能进行实用对象和流动结构分割
本文探讨了如何将人工智能(AI)分割模型,特别是 "任意分割模型"(SAM),整合到流体力学实验中。SAM 的结构包括图像编码器、提示编码器和掩码解码器,本文研究了 SAM 在检测和分割物体及流动结构中的应用。此外,我们还探索了自然语言提示(如 BERT)的整合,以提高 SAM 在分割特定物体方面的性能。通过案例研究,我们发现 SAM 在流体实验中的物体检测方面非常稳健。然而,与标量湍流和气泡流等流动特性相关的分割需要进行微调。为了方便应用,我们建立了一个资源库(https://github.com/AliRKhojasteh/Flow_segmentation),在这里可以访问模型和使用示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Double refractive particle tracking and sizing Enhanced three-dimensional particle detection in microcirculation experiments with defocus particle tracking and ghost red blood cells Development of a sensor for liquid film thickness measurements during annular flow in microchannels Time resolution improvement of ultrasonic velocity profiler for flow over cylinder using EPOD method with optimally placed time-resolved sensors Ultrasound imaging velocimetry in a dense two-phase swirling flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1