{"title":"Microwave Method of Tubular Plasma Density Measurement for Relativistic Microwave Oscillator","authors":"A. V. Ponomarev, D. K. Ul’yanov","doi":"10.1134/S1063780X24600737","DOIUrl":null,"url":null,"abstract":"<p>The method for determining the absolute plasma density in sources that create plasma in the strong magnetic field using the electron beam has been developed and tested. The results of plasma density measurements in the source of tubular plasma used in research on plasma relativistic microwave electronics are presented. It was shown that at time of switching-on plasma maser, for discharge currents of 5, 9, and 20 A, the plasma densities were (3 ± 0.3) × 10<sup>12</sup>, (5.5 ± 0.6) × 10<sup>12</sup>, and (9.5 ± 1) × 10<sup>12</sup> cm<sup>–3</sup>, respectively. Comparison with the probe measurements previously performed, as well as with the numerical calculations made using the KARAT code, showed good agreement between the results of microwave measurements and numerical calculations, while the measurement error did not exceed 15%. The results of probe measurements much stronger deviate from the results of microwave measurements, which is associated with the presence of the strong magnetic field in the plasma source.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24600737","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The method for determining the absolute plasma density in sources that create plasma in the strong magnetic field using the electron beam has been developed and tested. The results of plasma density measurements in the source of tubular plasma used in research on plasma relativistic microwave electronics are presented. It was shown that at time of switching-on plasma maser, for discharge currents of 5, 9, and 20 A, the plasma densities were (3 ± 0.3) × 1012, (5.5 ± 0.6) × 1012, and (9.5 ± 1) × 1012 cm–3, respectively. Comparison with the probe measurements previously performed, as well as with the numerical calculations made using the KARAT code, showed good agreement between the results of microwave measurements and numerical calculations, while the measurement error did not exceed 15%. The results of probe measurements much stronger deviate from the results of microwave measurements, which is associated with the presence of the strong magnetic field in the plasma source.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.