Secure speech-recognition data transfer in the internet of things using a power system and a tried-and-true key generation technique

Zhe Wang, Shuangbai He, Guoan Li
{"title":"Secure speech-recognition data transfer in the internet of things using a power system and a tried-and-true key generation technique","authors":"Zhe Wang, Shuangbai He, Guoan Li","doi":"10.1007/s10586-024-04649-3","DOIUrl":null,"url":null,"abstract":"<p>To secure the privacy, confidentiality, and integrity of Speech Data (SD), the concept of secure Speech Recognition (SR) involves accurately recording and comprehending spoken language while employing diverse security processes. As the Internet of Things (IoT) rapidly evolves, the integration of SR capabilities into IoT devices gains significance. However, ensuring the security and privacy of private SD post-integration remains a critical concern. Despite the potential benefits, implementing the proposed Reptile Search Optimized Hidden Markov Model (RSO-HMM) for SR and integrating it with IoT devices may encounter complexities due to diverse device types. Moreover, the challenge of maintaining data security and privacy for assigned SD in practical IoT settings poses a significant hurdle. Ensuring seamless interoperability and robust security measures is essential. We introduce the Reptile Search Optimized Hidden Markov Model (RSO-HMM) for SR, utilizing retrieved aspects as speech data. Gathering a diverse range of SD from speakers with varying linguistic backgrounds enhances the accuracy of the SR system. Preprocessing involves Z-score normalization for robustness and mitigation of outlier effects. The Perceptual Linear Prediction (PLP) technique facilitates efficient extraction of essential acoustic data from speech sources. Addressing data security, Elliptic Curve Cryptography (ECC) is employed for encryption, particularly suited for resource-constrained scenarios. Our study evaluates the SR system, employing key performance metrics including accuracy, precision, recall, and F1 score. The thorough assessment demonstrates the system's remarkable performance, achieving an impressive accuracy of 96%. The primary objective revolves around appraising the system's capacity and dependability in accurately transcribing speech signals. By proposing a comprehensive approach that combines the RSO-HMM for SR, data preprocessing techniques, and ECC encryption, this study advocates for the wider adoption of SR technology within the IoT ecosystem. By tackling critical data security concerns, this approach paves the way for a safer and more efficient globally interconnected society, encouraging the broader utilization of SR technology in various applications.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04649-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To secure the privacy, confidentiality, and integrity of Speech Data (SD), the concept of secure Speech Recognition (SR) involves accurately recording and comprehending spoken language while employing diverse security processes. As the Internet of Things (IoT) rapidly evolves, the integration of SR capabilities into IoT devices gains significance. However, ensuring the security and privacy of private SD post-integration remains a critical concern. Despite the potential benefits, implementing the proposed Reptile Search Optimized Hidden Markov Model (RSO-HMM) for SR and integrating it with IoT devices may encounter complexities due to diverse device types. Moreover, the challenge of maintaining data security and privacy for assigned SD in practical IoT settings poses a significant hurdle. Ensuring seamless interoperability and robust security measures is essential. We introduce the Reptile Search Optimized Hidden Markov Model (RSO-HMM) for SR, utilizing retrieved aspects as speech data. Gathering a diverse range of SD from speakers with varying linguistic backgrounds enhances the accuracy of the SR system. Preprocessing involves Z-score normalization for robustness and mitigation of outlier effects. The Perceptual Linear Prediction (PLP) technique facilitates efficient extraction of essential acoustic data from speech sources. Addressing data security, Elliptic Curve Cryptography (ECC) is employed for encryption, particularly suited for resource-constrained scenarios. Our study evaluates the SR system, employing key performance metrics including accuracy, precision, recall, and F1 score. The thorough assessment demonstrates the system's remarkable performance, achieving an impressive accuracy of 96%. The primary objective revolves around appraising the system's capacity and dependability in accurately transcribing speech signals. By proposing a comprehensive approach that combines the RSO-HMM for SR, data preprocessing techniques, and ECC encryption, this study advocates for the wider adoption of SR technology within the IoT ecosystem. By tackling critical data security concerns, this approach paves the way for a safer and more efficient globally interconnected society, encouraging the broader utilization of SR technology in various applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电力系统和久经考验的密钥生成技术确保物联网中语音识别数据传输的安全性
为了确保语音数据(SD)的隐私性、保密性和完整性,安全语音识别(SR)的概念涉及准确记录和理解有声语言,同时采用多种安全流程。随着物联网(IoT)的快速发展,将 SR 功能集成到物联网设备中变得越来越重要。然而,确保集成后私人 SD 的安全性和隐私性仍然是一个关键问题。尽管存在潜在的优势,但由于设备类型的多样性,为 SR 实现拟议的爬行搜索优化隐马尔可夫模型(RSO-HMM)并将其与物联网设备集成可能会遇到复杂的问题。此外,在实际物联网环境中维护分配的 SD 的数据安全和隐私也是一大挑战。确保无缝互操作性和强大的安全措施至关重要。我们为 SR 引入了爬行动物搜索优化隐马尔可夫模型(RSO-HMM),将检索到的方面作为语音数据加以利用。从具有不同语言背景的说话者那里收集各种 SD 数据可提高 SR 系统的准确性。预处理包括 Z 分数归一化,以提高鲁棒性并减轻离群效应。感知线性预测(PLP)技术有助于从语音源中高效提取重要的声学数据。在数据安全方面,采用了椭圆曲线加密技术(ECC)进行加密,特别适用于资源有限的情况。我们的研究采用准确度、精确度、召回率和 F1 分数等关键性能指标对 SR 系统进行了评估。全面的评估证明了该系统的卓越性能,准确率达到了令人印象深刻的 96%。主要目标是评估系统在准确转录语音信号方面的能力和可靠性。通过提出一种将 RSO-HMM 用于 SR、数据预处理技术和 ECC 加密相结合的综合方法,本研究倡导在物联网生态系统中更广泛地采用 SR 技术。通过解决关键的数据安全问题,这种方法为建立一个更安全、更高效的全球互联社会铺平了道路,鼓励在各种应用中更广泛地使用语音识别技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1