HPTCollector: high-performance telemetry collector

Mazahir Hussain, Buseung Cho
{"title":"HPTCollector: high-performance telemetry collector","authors":"Mazahir Hussain, Buseung Cho","doi":"10.1007/s10586-024-04650-w","DOIUrl":null,"url":null,"abstract":"<p>Network telemetry plays a pivotal role in understanding and optimizing underlying network infrastructures by facilitating essential operations like troubleshooting and traffic load balancing. However, real-time processing of network packets, especially at speeds of 100 Gbps or more, presents significant challenges due to the uncoordinated processing performance between kernel and user-space applications. This study introduces high-performance telemetry collector (HPTCollector) aims at harmonizing the processing activities of kernel and user-space applications, thereby enhancing the performance of network telemetry systems. HPTCollector demonstrates exceptional adaptability and efficiency, achieving remarkable throughput rates. Specifically, our mechanism can process up to 31 million packets per second using just 12 CPU cores in user-space, an achievement made possible through parallel packet processing techniques. This capability ensures robust support for network telemetry processing at collector for network infrastructures with bandwidth of 350 Gbps and 2.03 Tbps, MTU size of 1500 and 9000 respectively. This breakthrough not only showcases the potential of our proposed mechanism but also sets a new benchmark in network telemetry collector performance.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"349 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04650-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Network telemetry plays a pivotal role in understanding and optimizing underlying network infrastructures by facilitating essential operations like troubleshooting and traffic load balancing. However, real-time processing of network packets, especially at speeds of 100 Gbps or more, presents significant challenges due to the uncoordinated processing performance between kernel and user-space applications. This study introduces high-performance telemetry collector (HPTCollector) aims at harmonizing the processing activities of kernel and user-space applications, thereby enhancing the performance of network telemetry systems. HPTCollector demonstrates exceptional adaptability and efficiency, achieving remarkable throughput rates. Specifically, our mechanism can process up to 31 million packets per second using just 12 CPU cores in user-space, an achievement made possible through parallel packet processing techniques. This capability ensures robust support for network telemetry processing at collector for network infrastructures with bandwidth of 350 Gbps and 2.03 Tbps, MTU size of 1500 and 9000 respectively. This breakthrough not only showcases the potential of our proposed mechanism but also sets a new benchmark in network telemetry collector performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPTCollector:高性能遥测采集器
网络遥测在了解和优化底层网络基础设施方面发挥着举足轻重的作用,可促进故障诊断和流量负载平衡等基本操作。然而,由于内核和用户空间应用程序之间的处理性能不协调,网络数据包的实时处理(尤其是在 100 Gbps 或更高速度下)面临着巨大挑战。本研究介绍的高性能遥测收集器(HPTCollector)旨在协调内核和用户空间应用程序的处理活动,从而提高网络遥测系统的性能。HPTCollector 展示了卓越的适应性和效率,实现了显著的吞吐率。具体来说,我们的机制在用户空间仅使用 12 个 CPU 内核,每秒就能处理多达 3100 万个数据包,这一成就是通过并行数据包处理技术实现的。这一能力确保了在收集器上对网络遥测处理的强大支持,网络基础设施的带宽分别为 350 Gbps 和 2.03 Tbps,MTU 大小分别为 1500 和 9000。这一突破不仅展示了我们提出的机制的潜力,也为网络遥测收集器的性能设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1