Eva E. Stüeken, Stephanie L. Olson, Eli Moore, Bradford J. Foley
{"title":"The Early Earth as an Analogue for Exoplanetary Biogeochemistry","authors":"Eva E. Stüeken, Stephanie L. Olson, Eli Moore, Bradford J. Foley","doi":"10.2138/rmg.2024.90.14","DOIUrl":null,"url":null,"abstract":"Planet Earth has evolved over the past 4.5 billion years from an entirely anoxic planet with possibly a different tectonic regime to the oxygenated world with horizontal plate tectonics that we know today. For most of this time, Earth has been inhabited by a purely microbial biosphere albeit with seemingly increasing complexity over time. A rich record of this geobiological evolution over most of Earth’s history thus provides insights into the remote detectability of microbial life under a variety of planetary conditions. Here we leverage Earth’s geobiological record with the aim of (a) illustrating the current state of knowledge and...","PeriodicalId":501196,"journal":{"name":"Reviews in Mineralogy and Geochemistry","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy and Geochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2138/rmg.2024.90.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Planet Earth has evolved over the past 4.5 billion years from an entirely anoxic planet with possibly a different tectonic regime to the oxygenated world with horizontal plate tectonics that we know today. For most of this time, Earth has been inhabited by a purely microbial biosphere albeit with seemingly increasing complexity over time. A rich record of this geobiological evolution over most of Earth’s history thus provides insights into the remote detectability of microbial life under a variety of planetary conditions. Here we leverage Earth’s geobiological record with the aim of (a) illustrating the current state of knowledge and...