Antony Premkumar, Francesca Loffredo, Heinz Pitsch, Markus Klein
{"title":"Towards Direct Numerical Simulations of Reactivity-Controlled Compression Ignition Engine Using n-Octanol/Ethanol Fuel Blends","authors":"Antony Premkumar, Francesca Loffredo, Heinz Pitsch, Markus Klein","doi":"10.1007/s10494-024-00570-2","DOIUrl":null,"url":null,"abstract":"<p>The results of a two-dimensional direct numerical simulation of a lean n-octanol-ethanol fuel blend under Reactivity Controlled Compression Ignition (RCCI) conditions are presented in this paper. Stratified temperature and high reactivity fuel fields of Gaussian, bi-modal, and log-normal distributions are studied for uncorrelated and correlated scenarios. The pimple loop is made to run twice to achieve compression heating. A chemical mechanism with 171 species and 734 reactions was developed to capture autoignition characteristics and flame propagation reasonably well. Diagnosing techniques published in the literature are used to determine whether the flame fronts are spontaneously propagating or not. As reported previously for other fuel blends under RCCI conditions, both deflagration and spontaneous ignition flame fronts are observed to co-exist. Gaussian, bi-modal, and log-normal fields respectively move towards a spontaneously igniting mode. Correlating temperature and high reactivity fuel fields not only makes combustion more spontaneously igniting but also more premixed. The analysis reveals the sensitivity of the DNS results with respect to the initial conditions which accordingly should be chosen with care.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-024-00570-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The results of a two-dimensional direct numerical simulation of a lean n-octanol-ethanol fuel blend under Reactivity Controlled Compression Ignition (RCCI) conditions are presented in this paper. Stratified temperature and high reactivity fuel fields of Gaussian, bi-modal, and log-normal distributions are studied for uncorrelated and correlated scenarios. The pimple loop is made to run twice to achieve compression heating. A chemical mechanism with 171 species and 734 reactions was developed to capture autoignition characteristics and flame propagation reasonably well. Diagnosing techniques published in the literature are used to determine whether the flame fronts are spontaneously propagating or not. As reported previously for other fuel blends under RCCI conditions, both deflagration and spontaneous ignition flame fronts are observed to co-exist. Gaussian, bi-modal, and log-normal fields respectively move towards a spontaneously igniting mode. Correlating temperature and high reactivity fuel fields not only makes combustion more spontaneously igniting but also more premixed. The analysis reveals the sensitivity of the DNS results with respect to the initial conditions which accordingly should be chosen with care.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.