The novel synthesis of reconfigurable generalized parallel manipulators with kinematic redundancy

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-07-29 DOI:10.1016/j.mechmachtheory.2024.105748
{"title":"The novel synthesis of reconfigurable generalized parallel manipulators with kinematic redundancy","authors":"","doi":"10.1016/j.mechmachtheory.2024.105748","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an innovative method to construct reconfigurable <em>Generalized Parallel Manipulators</em> (<em>GPM</em>s) through the integration of kinematotropic single-loop linkages and configurable platforms. The approach puts forward, for the first time, the development of reconfigurable manipulators by introducing kinematic redundancy. Firstly, this study analyzes the geometric configurations of the twofold-symmetric 8-bar single-loop linkage across various working phases. Secondly, by combining the kinematotropic linkage with moving platforms in GPMs, reconfigurable manipulators with kinematic redundancy are achieved. To validate the kinematic constraints and reconfigurable characteristics of the derived mechanisms, the algebraic structure properties of Lie groups are investigated. Then, a novel class of reconfigurable GPMs with kinematic redundancy is synthesized. The ability to shape the configurations of the platforms enables the resulting manipulators to exhibit reconfigurability. Consequently, these manipulators can execute multiple motion models corresponding to different working phases of the 8-bar linkages. Finally, this research highlights the potential applications of deployable stage by using the kinematic redundancy. The idea presented in this paper explores new possibilities for the development of reconfigurable manipulators with adaptive capabilities, and extend the potential applications of GPMs.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001757","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an innovative method to construct reconfigurable Generalized Parallel Manipulators (GPMs) through the integration of kinematotropic single-loop linkages and configurable platforms. The approach puts forward, for the first time, the development of reconfigurable manipulators by introducing kinematic redundancy. Firstly, this study analyzes the geometric configurations of the twofold-symmetric 8-bar single-loop linkage across various working phases. Secondly, by combining the kinematotropic linkage with moving platforms in GPMs, reconfigurable manipulators with kinematic redundancy are achieved. To validate the kinematic constraints and reconfigurable characteristics of the derived mechanisms, the algebraic structure properties of Lie groups are investigated. Then, a novel class of reconfigurable GPMs with kinematic redundancy is synthesized. The ability to shape the configurations of the platforms enables the resulting manipulators to exhibit reconfigurability. Consequently, these manipulators can execute multiple motion models corresponding to different working phases of the 8-bar linkages. Finally, this research highlights the potential applications of deployable stage by using the kinematic redundancy. The idea presented in this paper explores new possibilities for the development of reconfigurable manipulators with adaptive capabilities, and extend the potential applications of GPMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有运动学冗余的可重构通用并行机械手的新型合成方法
本文提出了一种创新方法,通过整合运动各向同性单环连接和可配置平台来构建可重构(s)。该方法首次提出了通过引入运动学冗余来开发可重构机械手的方法。首先,本研究分析了两重对称 8 杆单环连杆在不同工作阶段的几何配置。其次,通过将运动各向同性连杆机构与 GPM 中的移动平台相结合,实现了具有运动冗余的可重构机械手。为了验证衍生机构的运动学约束和可重构特性,研究了李群的代数结构特性。然后,合成了一类具有运动冗余的新型可重构 GPM。由于能够塑造平台的配置,因此衍生出的机械手表现出了可重构性。因此,这些机械手可以执行与 8 杆连杆的不同工作阶段相对应的多种运动模型。最后,本研究通过使用运动学冗余突出了可部署平台的潜在应用。本文提出的想法为开发具有自适应能力的可重构机械手探索了新的可能性,并拓展了 GPM 的潜在应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1