Small Molecule Optimization with Large Language Models

Philipp Guevorguian, Menua Bedrosian, Tigran Fahradyan, Gayane Chilingaryan, Hrant Khachatrian, Armen Aghajanyan
{"title":"Small Molecule Optimization with Large Language Models","authors":"Philipp Guevorguian, Menua Bedrosian, Tigran Fahradyan, Gayane Chilingaryan, Hrant Khachatrian, Armen Aghajanyan","doi":"arxiv-2407.18897","DOIUrl":null,"url":null,"abstract":"Recent advancements in large language models have opened new possibilities\nfor generative molecular drug design. We present Chemlactica and Chemma, two\nlanguage models fine-tuned on a novel corpus of 110M molecules with computed\nproperties, totaling 40B tokens. These models demonstrate strong performance in\ngenerating molecules with specified properties and predicting new molecular\ncharacteristics from limited samples. We introduce a novel optimization\nalgorithm that leverages our language models to optimize molecules for\narbitrary properties given limited access to a black box oracle. Our approach\ncombines ideas from genetic algorithms, rejection sampling, and prompt\noptimization. It achieves state-of-the-art performance on multiple molecular\noptimization benchmarks, including an 8% improvement on Practical Molecular\nOptimization compared to previous methods. We publicly release the training\ncorpus, the language models and the optimization algorithm.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in large language models have opened new possibilities for generative molecular drug design. We present Chemlactica and Chemma, two language models fine-tuned on a novel corpus of 110M molecules with computed properties, totaling 40B tokens. These models demonstrate strong performance in generating molecules with specified properties and predicting new molecular characteristics from limited samples. We introduce a novel optimization algorithm that leverages our language models to optimize molecules for arbitrary properties given limited access to a black box oracle. Our approach combines ideas from genetic algorithms, rejection sampling, and prompt optimization. It achieves state-of-the-art performance on multiple molecular optimization benchmarks, including an 8% improvement on Practical Molecular Optimization compared to previous methods. We publicly release the training corpus, the language models and the optimization algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大语言模型优化小分子结构
大型语言模型的最新进展为生成式分子药物设计提供了新的可能性。我们介绍了 Chemlactica 和 Chemma 这两个语言模型,它们是在由 1.1 亿个分子组成的新语料库上进行微调的,该语料库具有计算出的特性,总计 4000 亿个词条。这些模型在生成具有指定性质的分子和从有限样本中预测新分子特征方面表现出了强大的性能。我们介绍了一种新颖的优化算法,该算法利用我们的语言模型,在有限的黑盒子神谕访问权限下优化分子的任意属性。我们的方法融合了遗传算法、拒绝采样和及时优化的思想。它在多个分子优化基准上取得了最先进的性能,包括在实用分子优化上比以前的方法提高了 8%。我们公开发布了训练语料库、语言模型和优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1