Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy

Morgan B. Talbot, Omar Costilla-Reyes, Jessica M. Lipschitz
{"title":"Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy","authors":"Morgan B. Talbot, Omar Costilla-Reyes, Jessica M. Lipschitz","doi":"arxiv-2409.11183","DOIUrl":null,"url":null,"abstract":"Comorbid anxiety disorders are common among patients with major depressive\ndisorder (MDD), and numerous studies have identified an association between\ncomorbid anxiety and resistance to pharmacological depression treatment.\nHowever, less is known regarding the effect of anxiety on non-pharmacological\ntherapies for MDD. We apply machine learning techniques to analyze MDD\ntreatment responses in a large-scale clinical trial (n=754), in which\nparticipants with MDD were recruited online and randomized to different\nsmartphone-based depression treatments. We find that a baseline GAD-7\nquestionnaire score in the \"moderate\" to \"severe\" range (>10) predicts greatly\nreduced probability of responding to treatment across treatment groups. Our\nfindings suggest that depressed individuals with comorbid anxiety face lower\nodds of substantial improvement in the context of smartphone-based therapeutic\ninterventions for MDD. Our work highlights a simple methodology for identifying\nclinically useful \"rules of thumb\" in treatment response prediction using\ninterpretable machine learning models and a forward variable selection process.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Comorbid anxiety disorders are common among patients with major depressive disorder (MDD), and numerous studies have identified an association between comorbid anxiety and resistance to pharmacological depression treatment. However, less is known regarding the effect of anxiety on non-pharmacological therapies for MDD. We apply machine learning techniques to analyze MDD treatment responses in a large-scale clinical trial (n=754), in which participants with MDD were recruited online and randomized to different smartphone-based depression treatments. We find that a baseline GAD-7 questionnaire score in the "moderate" to "severe" range (>10) predicts greatly reduced probability of responding to treatment across treatment groups. Our findings suggest that depressed individuals with comorbid anxiety face lower odds of substantial improvement in the context of smartphone-based therapeutic interventions for MDD. Our work highlights a simple methodology for identifying clinically useful "rules of thumb" in treatment response prediction using interpretable machine learning models and a forward variable selection process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并发焦虑症状预示着智能手机心理疗法改善抑郁症状的几率较低
合并焦虑症在重度抑郁障碍(MDD)患者中很常见,许多研究发现合并焦虑症与抗药性抑郁症治疗之间存在关联,但焦虑症对MDD非药物疗法的影响却鲜为人知。我们应用机器学习技术分析了一项大规模临床试验(n=754)中的 MDD 治疗反应,该试验在线招募了患有 MDD 的参与者,并将他们随机分配到不同的基于智能手机的抑郁症治疗中。我们发现,基线 GAD-7 问卷得分在 "中度 "到 "重度 "范围内(>10),预示着各治疗组对治疗做出反应的概率大大降低。我们的研究结果表明,在基于智能手机的 MDD 治疗干预中,合并焦虑症的抑郁症患者获得实质性改善的几率较低。我们的工作强调了一种简单的方法,即利用可解释的机器学习模型和前向变量选择过程,在治疗反应预测中识别临床有用的 "经验法则"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1