Amila Ljutic, Jack Moore, Genevieve Ali, Laura Van Eerd, Merrin L. Macrae, Claudia Wagner-Riddle
{"title":"Variable soil moisture responses to rainfall events in fields under different management practices","authors":"Amila Ljutic, Jack Moore, Genevieve Ali, Laura Van Eerd, Merrin L. Macrae, Claudia Wagner-Riddle","doi":"10.1002/hyp.15242","DOIUrl":null,"url":null,"abstract":"<p>Soil moisture response to rainfall is a key factor that dictates how well a landscape can support crop growth as well as its susceptibility to water runoff and leaching, however, few studies have investigated how agricultural management impacts this important soil function. This study compares two common agricultural soil treatments (cover crops and soil compaction) and their soil moisture response to rainfall in comparison to a control. In a humid temperate climate during March to November, individual rainfall events were delineated over two growing seasons and corresponding soil moisture responses were identified using in situ soil moisture sensors at four soil depths (20, 30, 40, and 60 cm). Results suggest that hydrological responses differed with both event type and management treatment. Not all rainfall events triggered a response: those that triggered responses at shallower soil depths were typically characterized by higher total event rainfall, and higher maximum and average rainfall intensity. In contrast, rainfall events triggering responses at deeper soil depths were characterized by longer event duration as well as higher 10-day antecedent rainfall (AR). Soil moisture responses for the cover crop treatment were characterized by relatively lower initial and peak soil moisture at shallower depths but higher values at 60 cm depth, whereas soil moisture responses for the control and compacted soil treatments demonstrated the opposite. Matrix flow was most often generated for rainfall events with high magnitude and was not preferentially associated with any particular soil treatment. However, specific conditions were needed to generate vertical preferential flow, namely high total event rainfall for both horizons, or high AR for preferential flow in the Ap horizon, or high rainfall intensity for preferential flow in the Bt horizon. Our findings demonstrate the potential for detailed event-based soil water process analysis using high-frequency, multi-depth soil moisture data.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15242","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Soil moisture response to rainfall is a key factor that dictates how well a landscape can support crop growth as well as its susceptibility to water runoff and leaching, however, few studies have investigated how agricultural management impacts this important soil function. This study compares two common agricultural soil treatments (cover crops and soil compaction) and their soil moisture response to rainfall in comparison to a control. In a humid temperate climate during March to November, individual rainfall events were delineated over two growing seasons and corresponding soil moisture responses were identified using in situ soil moisture sensors at four soil depths (20, 30, 40, and 60 cm). Results suggest that hydrological responses differed with both event type and management treatment. Not all rainfall events triggered a response: those that triggered responses at shallower soil depths were typically characterized by higher total event rainfall, and higher maximum and average rainfall intensity. In contrast, rainfall events triggering responses at deeper soil depths were characterized by longer event duration as well as higher 10-day antecedent rainfall (AR). Soil moisture responses for the cover crop treatment were characterized by relatively lower initial and peak soil moisture at shallower depths but higher values at 60 cm depth, whereas soil moisture responses for the control and compacted soil treatments demonstrated the opposite. Matrix flow was most often generated for rainfall events with high magnitude and was not preferentially associated with any particular soil treatment. However, specific conditions were needed to generate vertical preferential flow, namely high total event rainfall for both horizons, or high AR for preferential flow in the Ap horizon, or high rainfall intensity for preferential flow in the Bt horizon. Our findings demonstrate the potential for detailed event-based soil water process analysis using high-frequency, multi-depth soil moisture data.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.