Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms

Karthikeyan Loganathan, Mohammad Najafi, Sharareh Kermanshachi, Praveen Kumar Maduri, Apurva Pamidimukkala
{"title":"Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms","authors":"Karthikeyan Loganathan, Mohammad Najafi, Sharareh Kermanshachi, Praveen Kumar Maduri, Apurva Pamidimukkala","doi":"10.1186/s43065-024-00101-3","DOIUrl":null,"url":null,"abstract":"Underground wastewater collection systems degrade with time, necessitating utility owners to engage in ongoing evaluations and enhancements of their asset management frameworks to preserve the performance of their assets. The inspection and condition assessment of sewer pipes are crucial for the effective operation and maintenance of sewer systems. The closed-circuit television (CCTV) is frequently employed to examine sewer pipes in the United States. This procedure is both costly and laborious because of the extensive number of pipes in a metropolis. Prioritisation of inspection for sanitary sewage pipe segments requiring repair or maintenance can be done in advance depending on their past performance. Hence, the aim of this study is to construct a predictive model for the state of sanitary sewer pipes, utilising data collected from a city located in the southcentral region of the United States. The main contribution is that this study used multiclass classification and predicted PACP scores of the pipes. Condition prediction models were developed using extensively utilised supervised machine learning algorithms including logistic regression (LR), k-nearest neighbors (k-NN), and random forest (RF). However, the bulk of the constructed models were assessed using a limited number of assessment measures, such as the receiver operator characteristic (ROC) curve and the area under the curve (AUC) value. This paper asserts that the assessment of the predictive capacity of these models cannot be determined only by relying on ROC and AUC values. Out of the three models evaluated in this study, the LR model had an AUC value of 0.76. However, this model had a higher number of misclassifications or inaccurate predictions compared to the other models. Consequently, these models were assessed using additional assessment measures, including precision, recall, and F-1 scores (which represent the harmonic mean of precision and recall). Curiously, the LR model achieved an F1-score of 0.28 on a scale ranging from 0 to 1. The RF model yielded an F1-score of 0.45 and an AUC value of 0.86. The existing model can be enhanced before it is employed by asset managers during the inspection phase to assess the state of their sanitary sewers and identify essential sewers that require immediate care.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-024-00101-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underground wastewater collection systems degrade with time, necessitating utility owners to engage in ongoing evaluations and enhancements of their asset management frameworks to preserve the performance of their assets. The inspection and condition assessment of sewer pipes are crucial for the effective operation and maintenance of sewer systems. The closed-circuit television (CCTV) is frequently employed to examine sewer pipes in the United States. This procedure is both costly and laborious because of the extensive number of pipes in a metropolis. Prioritisation of inspection for sanitary sewage pipe segments requiring repair or maintenance can be done in advance depending on their past performance. Hence, the aim of this study is to construct a predictive model for the state of sanitary sewer pipes, utilising data collected from a city located in the southcentral region of the United States. The main contribution is that this study used multiclass classification and predicted PACP scores of the pipes. Condition prediction models were developed using extensively utilised supervised machine learning algorithms including logistic regression (LR), k-nearest neighbors (k-NN), and random forest (RF). However, the bulk of the constructed models were assessed using a limited number of assessment measures, such as the receiver operator characteristic (ROC) curve and the area under the curve (AUC) value. This paper asserts that the assessment of the predictive capacity of these models cannot be determined only by relying on ROC and AUC values. Out of the three models evaluated in this study, the LR model had an AUC value of 0.76. However, this model had a higher number of misclassifications or inaccurate predictions compared to the other models. Consequently, these models were assessed using additional assessment measures, including precision, recall, and F-1 scores (which represent the harmonic mean of precision and recall). Curiously, the LR model achieved an F1-score of 0.28 on a scale ranging from 0 to 1. The RF model yielded an F1-score of 0.45 and an AUC value of 0.86. The existing model can be enhanced before it is employed by asset managers during the inspection phase to assess the state of their sanitary sewers and identify essential sewers that require immediate care.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有监督的机器学习算法确定重力式卫生下水道系统检查的优先次序
地下污水收集系统会随着时间的推移而退化,因此公用事业所有者必须对其资产管理框架进行持续评估和改进,以保持其资产的性能。下水管道的检查和状况评估对于下水道系统的有效运行和维护至关重要。美国经常使用闭路电视(CCTV)来检查下水管道。由于大都市的下水管道数量众多,这一程序既昂贵又费力。对于需要维修或维护的卫生污水管道,可以根据其过去的表现提前确定检查的优先次序。因此,本研究的目的是利用从美国中南部地区一个城市收集到的数据,构建一个卫生污水管道状态预测模型。本研究的主要贡献在于采用了多类分类法并预测了管道的 PACP 分数。使用广泛使用的监督机器学习算法开发了状态预测模型,包括逻辑回归 (LR)、k-近邻 (k-NN) 和随机森林 (RF)。然而,大部分构建的模型都是通过有限的评估指标进行评估的,如接收器运算特性曲线(ROC)和曲线下面积(AUC)值。本文认为,对这些模型预测能力的评估不能仅依赖于 ROC 和 AUC 值。在本研究评估的三个模型中,LR 模型的 AUC 值为 0.76。然而,与其他模型相比,该模型的误分类或预测不准确的次数较多。因此,对这些模型进行了额外的评估,包括精确度、召回率和 F-1 分数(代表精确度和召回率的调和平均值)。奇怪的是,在 0 到 1 的范围内,LR 模型的 F1 分数为 0.28,而 RF 模型的 F1 分数为 0.45,AUC 值为 0.86。资产管理者在检查阶段使用现有模型评估卫生下水道状况并识别需要立即处理的重要下水道之前,可以对其进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Automated crack identification in structures using acoustic waveforms and deep learning Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms Numerical investigation on the deformation of railway embankment under normal faulting Evaluation of the physical characteristics of reinforced concrete subject to corrosion using a poro-elastic acoustic model inversion technique applied to ultrasonic measurements An investigation of belief-free DRL and MCTS for inspection and maintenance planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1