Multiple scattering simulation via physics-informed neural networks

IF 8.7 2区 工程技术 Q1 Mathematics Engineering with Computers Pub Date : 2024-07-30 DOI:10.1007/s00366-024-02038-3
Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti
{"title":"Multiple scattering simulation via physics-informed neural networks","authors":"Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti","doi":"10.1007/s00366-024-02038-3","DOIUrl":null,"url":null,"abstract":"<p>This work presents a physics-driven machine learning framework for the simulation of acoustic scattering problems. The proposed framework relies on a physics-informed neural network (PINN) architecture that leverages prior knowledge based on the physics of the scattering problem as well as a tailored network structure that embodies the concept of the superposition principle of linear wave interaction. The framework can also simulate the scattered field due to rigid scatterers having arbitrary shape as well as high-frequency problems. Unlike conventional data-driven neural networks, the PINN is trained by directly enforcing the governing equations describing the underlying physics, hence without relying on any labeled training dataset. Remarkably, the network model has significantly lower discretization dependence and offers simulation capabilities akin to parallel computation. This feature is particularly beneficial to address computational challenges typically associated with conventional mesh-dependent simulation methods. The performance of the network is investigated via a comprehensive numerical study that explores different application scenarios based on acoustic scattering.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02038-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a physics-driven machine learning framework for the simulation of acoustic scattering problems. The proposed framework relies on a physics-informed neural network (PINN) architecture that leverages prior knowledge based on the physics of the scattering problem as well as a tailored network structure that embodies the concept of the superposition principle of linear wave interaction. The framework can also simulate the scattered field due to rigid scatterers having arbitrary shape as well as high-frequency problems. Unlike conventional data-driven neural networks, the PINN is trained by directly enforcing the governing equations describing the underlying physics, hence without relying on any labeled training dataset. Remarkably, the network model has significantly lower discretization dependence and offers simulation capabilities akin to parallel computation. This feature is particularly beneficial to address computational challenges typically associated with conventional mesh-dependent simulation methods. The performance of the network is investigated via a comprehensive numerical study that explores different application scenarios based on acoustic scattering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过物理信息神经网络进行多重散射模拟
本研究提出了一种物理驱动的机器学习框架,用于模拟声散射问题。提出的框架依赖于物理信息神经网络(PINN)架构,该架构利用了基于散射问题物理原理的先验知识,以及体现线性波相互作用叠加原理概念的定制网络结构。该框架还能模拟任意形状的刚性散射体所产生的散射场以及高频问题。与传统的数据驱动型神经网络不同,PINN 是通过直接执行描述底层物理的管理方程来进行训练的,因此无需依赖任何标注的训练数据集。值得注意的是,该网络模型的离散化依赖性大大降低,并提供了类似于并行计算的模拟能力。这一特点特别有利于解决与传统网格依赖模拟方法相关的计算难题。该网络的性能通过一项全面的数值研究进行了调查,该研究探索了基于声散射的不同应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
期刊最新文献
Simulating the aftermath of Northern European Enclosure Dam (NEED) break and flooding of European coast 3d fluid–structure interaction simulation with an Arbitrary–Lagrangian–Eulerian approach with applications to flying objects Scalable data-driven micromechanics model trained with pairwise fiber data for composite materials with randomly distributed fibers Stress-based topology optimization using maximum entropy basis functions-based meshless method Reducing spatial discretization error on coarse CFD simulations using an openFOAM-embedded deep learning framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1