Novel hybrid compounds containing 1,2,3-triazole and naphthalene subunits as xanthine oxidase inhibitors

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of the Iranian Chemical Society Pub Date : 2024-08-01 DOI:10.1007/s13738-024-03061-3
Ayse Tan, Samir Abbas Ali Noma
{"title":"Novel hybrid compounds containing 1,2,3-triazole and naphthalene subunits as xanthine oxidase inhibitors","authors":"Ayse Tan,&nbsp;Samir Abbas Ali Noma","doi":"10.1007/s13738-024-03061-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, some hybrid compounds containing 1,2,3-triazole and naphthalene subunits <b>16</b>(<b>a</b>–<b>g</b>) and <b>17</b>(<b>a</b>–<b>f</b>) were synthesized and characterized by <sup>1</sup>H, <sup>13</sup>C-NMR, FT-IR, and HR-MS analyses. The in vitro inhibitor activities on the xanthine oxidase (XO) enzyme of all the target compounds were investigated and compared with allopurinol, which is one of the most common gout drugs and inhibits the XO. The activity results show that all the target compounds have potential XO inhibitor activities. The compounds showed IC<sub>50</sub> values in the range of 0.825–2.254 μM on the XO. IC<sub>50</sub> value of allopurinol on the XO was determined to be 1.475 μM. <b>16e</b> and <b>17e</b> compounds among them exhibited the best inhibitions compared to other compounds and allopurinol. Additionally, molecular docking studies were carried out on the 3D crystallographic structure of the XO to investigate possible interactions with the active site of the XO of all compounds. According to the docking results, all the target compounds showed that the best binding energies vary in the between − 9.71 kcal.mol<sup>−1</sup> and − 11.43 kcal.mol<sup>−1</sup>. Finally, in silico ADME and toxicity properties of the compounds were investigated using the Swiss ADME, ProTox-II, and Osiris Property Explorer websites and it has been predicted that the target compounds have low toxicity profiles. Consequently, the compounds can be considered new promising inhibitors for the XO.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03061-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, some hybrid compounds containing 1,2,3-triazole and naphthalene subunits 16(ag) and 17(af) were synthesized and characterized by 1H, 13C-NMR, FT-IR, and HR-MS analyses. The in vitro inhibitor activities on the xanthine oxidase (XO) enzyme of all the target compounds were investigated and compared with allopurinol, which is one of the most common gout drugs and inhibits the XO. The activity results show that all the target compounds have potential XO inhibitor activities. The compounds showed IC50 values in the range of 0.825–2.254 μM on the XO. IC50 value of allopurinol on the XO was determined to be 1.475 μM. 16e and 17e compounds among them exhibited the best inhibitions compared to other compounds and allopurinol. Additionally, molecular docking studies were carried out on the 3D crystallographic structure of the XO to investigate possible interactions with the active site of the XO of all compounds. According to the docking results, all the target compounds showed that the best binding energies vary in the between − 9.71 kcal.mol−1 and − 11.43 kcal.mol−1. Finally, in silico ADME and toxicity properties of the compounds were investigated using the Swiss ADME, ProTox-II, and Osiris Property Explorer websites and it has been predicted that the target compounds have low toxicity profiles. Consequently, the compounds can be considered new promising inhibitors for the XO.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为黄嘌呤氧化酶抑制剂的含有 1,2,3-三唑和萘亚基的新型杂化化合物
本研究合成了一些含有 1,2,3-三唑和萘亚基 16(a-g) 和 17(a-f) 的杂化化合物,并通过 1H、13C-NMR、FT-IR 和 HR-MS 分析对其进行了表征。研究了所有目标化合物对黄嘌呤氧化酶(XO)的体外抑制活性,并与别嘌醇进行了比较。活性结果表明,所有目标化合物都具有潜在的 XO 抑制活性。这些化合物对 XO 的 IC50 值在 0.825-2.254 μM 之间。别嘌醇对 XO 的 IC50 值为 1.475 μM。与其他化合物和别嘌醇相比,16e 和 17e 化合物的抑制效果最好。此外,还对 XO 的三维晶体结构进行了分子对接研究,以探讨所有化合物与 XO 活性位点之间可能存在的相互作用。根据对接结果,所有目标化合物的最佳结合能介于 - 9.71 kcal.mol-1 和 - 11.43 kcal.mol-1 之间。最后,利用 Swiss ADME、ProTox-II 和 Osiris Property Explorer 网站对化合物的 ADME 和毒性特性进行了研究,结果表明目标化合物具有低毒性。因此,这些化合物可被视为新的有前途的 XO 抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
期刊最新文献
Surfactant-modified carbon nano-onion-β-cyclodextrin nanocomposite as an efficient sorbent in dispersive solid phase extraction of metoprolol and atenolol from plasma samples prior to HPLC–PDA analysis Electrocatalytic reduction of nitrate using Mg(OH)2 copper modified electrode Core shell ZnO-MnO2 nanocomposites for dye degradation and DFT simulation An electrochemical sensor based on NH2-MWCNTS-CMC and ZIF-67 peroxidase-like nanocomposite for sensitive luteolin detection Experimental and computational insights into polymorphism in an antimicrobial sulfadrug: discovery of a novel monoclinic form of sulfamerazine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1