Selective denoising in document images using reinforcement learning

Divya Srivastava, Gaurav Harit
{"title":"Selective denoising in document images using reinforcement learning","authors":"Divya Srivastava, Gaurav Harit","doi":"10.1007/s12046-024-02574-0","DOIUrl":null,"url":null,"abstract":"<p>Image denoising deals with removal of unwanted noise from images. While there have been many techniques that can be applied to denoise a given input noisy image, the methods process an image in its entirety, assuming that the noise uniformly affects the entire image. For inputs where the noise affects a localised part of the image, applying methods that attempt to denoise the entire image can adversely affect the clean portions. To address this problem, we propose a deep reinforcement learning-based framework aiming to overcome this limitation and achieve better results for images with non-uniformly distributed noise. We propose a two-step procedure that first identifies the noisy patch and then denoises the extracted patch. We use a reinforcement learning-based approach for noise localization and use PixelRL for noise removal. We have prepared a comprehensive dataset specifically for the noise localization problem, and noise patches are induced in clean document images using various noise patterns, such as Gaussian noise, coffee stains, and ink bleeds.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02574-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising deals with removal of unwanted noise from images. While there have been many techniques that can be applied to denoise a given input noisy image, the methods process an image in its entirety, assuming that the noise uniformly affects the entire image. For inputs where the noise affects a localised part of the image, applying methods that attempt to denoise the entire image can adversely affect the clean portions. To address this problem, we propose a deep reinforcement learning-based framework aiming to overcome this limitation and achieve better results for images with non-uniformly distributed noise. We propose a two-step procedure that first identifies the noisy patch and then denoises the extracted patch. We use a reinforcement learning-based approach for noise localization and use PixelRL for noise removal. We have prepared a comprehensive dataset specifically for the noise localization problem, and noise patches are induced in clean document images using various noise patterns, such as Gaussian noise, coffee stains, and ink bleeds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习对文档图像进行选择性去噪
图像去噪是指去除图像中不需要的噪声。虽然有许多技术可用于对给定的输入噪声图像进行去噪,但这些方法是对图像整体进行处理,假定噪声均匀地影响整个图像。如果输入的噪声影响到图像的局部,那么采用试图对整个图像进行去噪处理的方法就会对干净的部分产生不利影响。为解决这一问题,我们提出了一种基于深度强化学习的框架,旨在克服这一局限性,并为具有非均匀分布噪声的图像取得更好的效果。我们提出了一个两步程序,首先识别噪声斑块,然后对提取的斑块进行去噪处理。我们使用基于强化学习的方法进行噪声定位,并使用 PixelRL 去除噪声。我们专门为噪声定位问题准备了一个综合数据集,并使用各种噪声模式(如高斯噪声、咖啡渍和墨水渗漏)在干净的文档图像中诱导噪声补丁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners Transformer-based Pouranic topic classification in Indian mythology Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization Development and analysis of Hastelloy-X alloy butt joint made by laser beam welding Comparative analysis of a remotely-controlled wetland paddy seeder and conventional drum seeder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1