Bruno de Oliveira Ferronato, Anke Maria Hoefer, Isobel Booksmythe, Rod Ubrihien, Arthur Georges
{"title":"City dwellers: habitat connectivity and demographic responses of a semi-aquatic turtle in Australia","authors":"Bruno de Oliveira Ferronato, Anke Maria Hoefer, Isobel Booksmythe, Rod Ubrihien, Arthur Georges","doi":"10.1007/s11252-024-01583-5","DOIUrl":null,"url":null,"abstract":"<p>Urbanization and fragmentation of habitat are major drivers of population declines in wildlife in cities. This study evaluated fragmentation of aquatic systems in the context of urbanization, using the Eastern long-necked turtle <i>Chelodina longicollis</i> as a model as it is a generalist species, highly vagile and engages in regular overland migration. During two seasons (2020-22), we compared <i>C. longicollis</i> demography in stormwater ponds in two distinct urban drainages, one with greater habitat connectivity (lower road network and an unmodified creek) and one with lower habitat connectivity (higher road network and stormwater drains) in Canberra, south-eastern Australia. Most of the parameters related to habitat (pond age and size) and food requirements (phosphate and prey biomass) for <i>C. longicollis</i> were similar between the two drainages, in addition to proportion of females, overall size-frequency distributions and population size (corrected for variation in capture probability). However, there was a significant effect of the interaction between pond habitat connectivity and pond size with population sizes increasing more steeply in higher than in lower connectivity sites (F<sub>1, 4</sub> = 14.3, <i>p</i> = 0.02). We also recaptured a marked turtle from a previous study in the drainage with more habitat connectivity, 14 years later and 15 km from its initial point of capture. This demonstrates the ability of the species to move within an urbanized context. Despite evidence of <i>C. longicollis</i> being resilient to urbanization, dispersal constraints seem to affect population dynamics and long term population viability in areas with low habitat connectivity.</p>","PeriodicalId":48869,"journal":{"name":"Urban Ecosystems","volume":"78 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11252-024-01583-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization and fragmentation of habitat are major drivers of population declines in wildlife in cities. This study evaluated fragmentation of aquatic systems in the context of urbanization, using the Eastern long-necked turtle Chelodina longicollis as a model as it is a generalist species, highly vagile and engages in regular overland migration. During two seasons (2020-22), we compared C. longicollis demography in stormwater ponds in two distinct urban drainages, one with greater habitat connectivity (lower road network and an unmodified creek) and one with lower habitat connectivity (higher road network and stormwater drains) in Canberra, south-eastern Australia. Most of the parameters related to habitat (pond age and size) and food requirements (phosphate and prey biomass) for C. longicollis were similar between the two drainages, in addition to proportion of females, overall size-frequency distributions and population size (corrected for variation in capture probability). However, there was a significant effect of the interaction between pond habitat connectivity and pond size with population sizes increasing more steeply in higher than in lower connectivity sites (F1, 4 = 14.3, p = 0.02). We also recaptured a marked turtle from a previous study in the drainage with more habitat connectivity, 14 years later and 15 km from its initial point of capture. This demonstrates the ability of the species to move within an urbanized context. Despite evidence of C. longicollis being resilient to urbanization, dispersal constraints seem to affect population dynamics and long term population viability in areas with low habitat connectivity.
期刊介绍:
Urban Ecosystems is an international journal devoted to scientific investigations of urban environments and the relationships between socioeconomic and ecological structures and processes in urban environments. The scope of the journal is broad, including interactions between urban ecosystems and associated suburban and rural environments. Contributions may span a range of specific subject areas as they may apply to urban environments: biodiversity, biogeochemistry, conservation biology, wildlife and fisheries management, ecosystem ecology, ecosystem services, environmental chemistry, hydrology, landscape architecture, meteorology and climate, policy, population biology, social and human ecology, soil science, and urban planning.