Mathematical theory of deep learning

Philipp Petersen, Jakob Zech
{"title":"Mathematical theory of deep learning","authors":"Philipp Petersen, Jakob Zech","doi":"arxiv-2407.18384","DOIUrl":null,"url":null,"abstract":"This book provides an introduction to the mathematical analysis of deep\nlearning. It covers fundamental results in approximation theory, optimization\ntheory, and statistical learning theory, which are the three main pillars of\ndeep neural network theory. Serving as a guide for students and researchers in\nmathematics and related fields, the book aims to equip readers with\nfoundational knowledge on the topic. It prioritizes simplicity over generality,\nand presents rigorous yet accessible results to help build an understanding of\nthe essential mathematical concepts underpinning deep learning.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This book provides an introduction to the mathematical analysis of deep learning. It covers fundamental results in approximation theory, optimization theory, and statistical learning theory, which are the three main pillars of deep neural network theory. Serving as a guide for students and researchers in mathematics and related fields, the book aims to equip readers with foundational knowledge on the topic. It prioritizes simplicity over generality, and presents rigorous yet accessible results to help build an understanding of the essential mathematical concepts underpinning deep learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习的数学理论
本书介绍了深度学习的数学分析。它涵盖了近似理论、优化理论和统计学习理论的基本结果,而这正是深度神经网络理论的三大支柱。作为数学及相关领域学生和研究人员的指南,本书旨在让读者掌握该主题的基础知识。本书将简洁性置于一般性之上,并提出了严谨而又通俗易懂的结果,以帮助读者理解支撑深度学习的基本数学概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Roger Godement et les fonctions de type positif Winning Lights Out with Fibonacci A Mathematical Model of The Effects of Strike On Nigerian Universities Generalized Carlos Scales Samgamagrāma Mādhava: An Updated Biography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1