Variability in Paralytic Shellfish Toxin Profiles and Dinoflagellate Diversity in Mussels and Seawater Collected during Spring in Korean Coastal Seawater

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Toxins Pub Date : 2024-07-31 DOI:10.3390/toxins16080338
Dong Han Choi, Wonseok Yang, Young-Eun Kim, Bum Soo Park, Jiyeon Sung, Jaeho Choi, Jung-Rae Rho, Young Seok Han, Yeonjung Lee
{"title":"Variability in Paralytic Shellfish Toxin Profiles and Dinoflagellate Diversity in Mussels and Seawater Collected during Spring in Korean Coastal Seawater","authors":"Dong Han Choi, Wonseok Yang, Young-Eun Kim, Bum Soo Park, Jiyeon Sung, Jaeho Choi, Jung-Rae Rho, Young Seok Han, Yeonjung Lee","doi":"10.3390/toxins16080338","DOIUrl":null,"url":null,"abstract":"Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by certain microalgae, particularly dinoflagellates, and they can accumulate in shellfish in coastal seawater and thus pose significant health risks to humans. To explore the relationship between toxicity and PST profiles in seawater and mussels, the spatiotemporal variations in PST concentrations and profiles were investigated along the southern coast of Korea under peak PST levels during spring. Seawater and mussel samples were collected biweekly from multiple stations, and the toxin concentrations in the samples were measured. Moreover, the dinoflagellate community composition was analyzed using next-generation sequencing to identify potential PST-producing species. The PST concentrations and toxin profiles showed substantial spatiotemporal variability, with GTX1 and GTX4 representing the dominant toxins in both samples, and C1/2 tending to be higher in seawater. Alexandrium species were identified as the primary sources of PSTs. Environmental factors such as water temperature and salinity influenced PST production. This study demonstrates that variability in the amount and composition of PSTs is due to intricate ecological interactions. To mitigate shellfish poisoning, continuous monitoring must be conducted to gain a deeper understanding of these interactions.","PeriodicalId":23119,"journal":{"name":"Toxins","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16080338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by certain microalgae, particularly dinoflagellates, and they can accumulate in shellfish in coastal seawater and thus pose significant health risks to humans. To explore the relationship between toxicity and PST profiles in seawater and mussels, the spatiotemporal variations in PST concentrations and profiles were investigated along the southern coast of Korea under peak PST levels during spring. Seawater and mussel samples were collected biweekly from multiple stations, and the toxin concentrations in the samples were measured. Moreover, the dinoflagellate community composition was analyzed using next-generation sequencing to identify potential PST-producing species. The PST concentrations and toxin profiles showed substantial spatiotemporal variability, with GTX1 and GTX4 representing the dominant toxins in both samples, and C1/2 tending to be higher in seawater. Alexandrium species were identified as the primary sources of PSTs. Environmental factors such as water temperature and salinity influenced PST production. This study demonstrates that variability in the amount and composition of PSTs is due to intricate ecological interactions. To mitigate shellfish poisoning, continuous monitoring must be conducted to gain a deeper understanding of these interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
春季在韩国沿海海水中采集的贻贝和海水中麻痹性贝类毒素特征和甲藻多样性的变异性
麻痹性贝类毒素(PST)是由某些微藻类,特别是甲藻产生的强效神经毒素,可在沿海海水中的贝类体内蓄积,从而对人类健康构成重大威胁。为了探究海水和贻贝中的毒性与 PST 特征之间的关系,研究人员在春季 PST 高峰期对韩国南部沿海地区的 PST 浓度和特征的时空变化进行了调查。每两周从多个站点采集海水和贻贝样本,并测量样本中的毒素浓度。此外,还利用新一代测序技术分析了甲藻群落的组成,以确定可能产生 PST 的物种。PST 浓度和毒素特征显示出很大的时空变异性,GTX1 和 GTX4 是两种样本中的主要毒素,C1/2 在海水中的浓度往往较高。亚历山大藻类被确定为 PST 的主要来源。水温和盐度等环境因素影响了 PST 的产生。这项研究表明,PST 数量和组成的变化是由错综复杂的生态相互作用造成的。为了减轻贝类中毒,必须进行持续监测,以深入了解这些相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Thermoregulation Effects of Phoneutria nigriventer Isolated Toxins in Rats Transcriptomic Analysis Reveals Diverse Expression of Scorpion Toxin Genes in Mesobuthus martensii The Contrasting Effects of Bothrops lanceolatus and Bothrops atrox Venom on Procoagulant Activity and Thrombus Stability under Blood Flow Conditions Astaxanthin Alleviates Hepatic Lipid Metabolic Dysregulation Induced by Microcystin-LR Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1