Removal of Pb (II) ions using chitosan oligosaccharide/carboxymethyl starch blend crosslinked with glutaraldehyde: a study on batch adsorption

IF 3.1 3区 化学 Q2 POLYMER SCIENCE Polymer Bulletin Pub Date : 2024-07-30 DOI:10.1007/s00289-024-05442-3
T. N. Balaji, K. S. Venkatesh, Sandhanasamy Devanesan, Mohamad S. AlSalhi, K. Vijayalakshmi, P. Supriya Prasad, P. N. Sudha, A. K. S. Ibrahim Sheriff
{"title":"Removal of Pb (II) ions using chitosan oligosaccharide/carboxymethyl starch blend crosslinked with glutaraldehyde: a study on batch adsorption","authors":"T. N. Balaji, K. S. Venkatesh, Sandhanasamy Devanesan, Mohamad S. AlSalhi, K. Vijayalakshmi, P. Supriya Prasad, P. N. Sudha, A. K. S. Ibrahim Sheriff","doi":"10.1007/s00289-024-05442-3","DOIUrl":null,"url":null,"abstract":"<p>Heavy metal removal from wastewater has emerged as a major environmental concern on a global scale. The primary objective of this study was to determine how well lead (Pb) can be removed from wastewater by adsorptive processes using a chitosan-oligosaccharide-based hybrid (chitosan oligosaccharide (COS)/carboxymethyl starch binary blend material developed in the presence of glutaraldehyde (Glu). The amine and hydroxyl groups in the COS structure, the hydroxy and carboxy groups in the carboxymethyl starch, and the imine groups created when the amino group of COS reacts with the aldehydic group glutaraldehyde aid in the removal of Pb ions. FTIR, SEM, and X-ray diffraction were used to characterize the COS/CMC + Glu blend. Batch adsorption experiments, in which various factors including the impact of initial concentration, the dose of adsorbent, and the duration of contact, were used to analyze the removal of ions. The pH-dependent adsorption of Pb ions peaked at pH 5. The favorability of the reported experimental data was confirmed using various theoretical models, such as the Freundlich, the Langmuir isotherms, and pseudo-first- and pseudo-second-order kinetics. Adsorption was best fit by the pseudo-second-order and Langmuir isotherms.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00289-024-05442-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal removal from wastewater has emerged as a major environmental concern on a global scale. The primary objective of this study was to determine how well lead (Pb) can be removed from wastewater by adsorptive processes using a chitosan-oligosaccharide-based hybrid (chitosan oligosaccharide (COS)/carboxymethyl starch binary blend material developed in the presence of glutaraldehyde (Glu). The amine and hydroxyl groups in the COS structure, the hydroxy and carboxy groups in the carboxymethyl starch, and the imine groups created when the amino group of COS reacts with the aldehydic group glutaraldehyde aid in the removal of Pb ions. FTIR, SEM, and X-ray diffraction were used to characterize the COS/CMC + Glu blend. Batch adsorption experiments, in which various factors including the impact of initial concentration, the dose of adsorbent, and the duration of contact, were used to analyze the removal of ions. The pH-dependent adsorption of Pb ions peaked at pH 5. The favorability of the reported experimental data was confirmed using various theoretical models, such as the Freundlich, the Langmuir isotherms, and pseudo-first- and pseudo-second-order kinetics. Adsorption was best fit by the pseudo-second-order and Langmuir isotherms.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用与戊二醛交联的壳聚糖低聚糖/羧甲基淀粉混合物去除铅 (II) 离子:批量吸附研究
去除废水中的重金属已成为全球关注的主要环境问题。本研究的主要目的是确定在戊二醛(Glu)存在下,使用基于壳聚糖寡糖的混合材料(壳聚糖寡糖(COS)/羧甲基淀粉二元共混材料),通过吸附工艺去除废水中铅(Pb)的效果。COS 结构中的胺基和羟基、羧甲基淀粉中的羟基和羧基以及 COS 的氨基与戊二醛的醛基反应生成的亚胺基均有助于去除铅离子。傅立叶变换红外光谱、扫描电子显微镜和 X 射线衍射被用来表征 COS/CMC + Glu 混合物。批量吸附实验分析了离子的去除情况,其中包括初始浓度、吸附剂剂量和接触时间等各种因素的影响。利用各种理论模型,如 Freundlich、Langmuir 等温线、伪一阶和伪二阶动力学,证实了实验数据的正确性。伪二阶和朗缪尔等温线最适合吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Bulletin
Polymer Bulletin 化学-高分子科学
CiteScore
6.00
自引率
6.20%
发文量
0
审稿时长
5.5 months
期刊介绍: "Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad. "Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."
期刊最新文献
Development and characterization of a simple and fast castor oil-based polyurethane coating The medicinal value of natural and modified Poria cocos polysaccharides Evaluation of a green synthesized biopolymer polymethyl methacrylate grafted Moringa gum amphiphilic graft copolymer (MOG-g-PMMA) with polymeric-surfactant like properties for biopharmaceutical applications Green synthesis and optimization of bacterial cellulose production from food industry by-products by response surface methodolgy Preparation and characterization of polyethylene glycol/sodium alginate aerogel beads loaded with biogenic zinc oxide nanoparticles: potential therapeutic option for treating multidrug-resistant bacteria and cytotoxic activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1