Wafer Dicing Vibration Investigation on Novel Wafer Mounting Techniques

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-07-29 DOI:10.1109/TSM.2024.3435338
Mohd Syahrin Amri;Ghazali Omar;Mohd Syafiq Mispan;Fuaida Harun;M. N. B. Othman;N. A. Ngatiman;Masrullizam Mat Ibrahim
{"title":"Wafer Dicing Vibration Investigation on Novel Wafer Mounting Techniques","authors":"Mohd Syahrin Amri;Ghazali Omar;Mohd Syafiq Mispan;Fuaida Harun;M. N. B. Othman;N. A. Ngatiman;Masrullizam Mat Ibrahim","doi":"10.1109/TSM.2024.3435338","DOIUrl":null,"url":null,"abstract":"Chipping has emerged as a significant issue in semiconductor manufacturing, particularly during the dicing process. The existing conventional single-sided wafer mounting technique does not have sufficient holding capability which contributes to instability during dicing and causes higher chipping performance. The objective of the study is to develop a novel wafer mounting technique that can hold the wafer firmly during dicing and improve the chipping performance. In the experiment, chipping and vibration performance during the dicing process on novel double-sided semi and full-sandwich wafer mounting were investigated and compared with the conventional single-sided wafer mounting technique. Chipping was measured using high power scope and ImageJ software while the vibration was initiated using the NI 9234 Sound-Vibration Module and SDT1-028K Piezoelectric film. Implementing extended surface tape coverage on double-sided UV mounting tape for the full sandwich wafer mounting technique resulted in superior wafer gripping during dicing and produced the lowest topside and backside wafer chipping performance. The novel double-sided full sandwich wafer mounting technique has demonstrated higher wafer holding capability, resulting in lower vibration during dicing and improved overall chipping performance","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"583-590"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10614291/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Chipping has emerged as a significant issue in semiconductor manufacturing, particularly during the dicing process. The existing conventional single-sided wafer mounting technique does not have sufficient holding capability which contributes to instability during dicing and causes higher chipping performance. The objective of the study is to develop a novel wafer mounting technique that can hold the wafer firmly during dicing and improve the chipping performance. In the experiment, chipping and vibration performance during the dicing process on novel double-sided semi and full-sandwich wafer mounting were investigated and compared with the conventional single-sided wafer mounting technique. Chipping was measured using high power scope and ImageJ software while the vibration was initiated using the NI 9234 Sound-Vibration Module and SDT1-028K Piezoelectric film. Implementing extended surface tape coverage on double-sided UV mounting tape for the full sandwich wafer mounting technique resulted in superior wafer gripping during dicing and produced the lowest topside and backside wafer chipping performance. The novel double-sided full sandwich wafer mounting technique has demonstrated higher wafer holding capability, resulting in lower vibration during dicing and improved overall chipping performance
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型晶片安装技术的晶片切割振动研究
碎裂已成为半导体制造过程中的一个重要问题,尤其是在切割过程中。现有的传统单面晶片安装技术不具备足够的固定能力,会导致切割过程中的不稳定性和更高的崩裂性能。本研究的目的是开发一种新型晶片安装技术,该技术能在切割过程中牢牢固定晶片,并改善晶片崩裂性能。在实验中,研究了新型双面半夹层和全夹层晶片安装技术在切割过程中的碎裂和振动性能,并与传统的单面晶片安装技术进行了比较。使用高功率显微镜和 ImageJ 软件测量了碎裂情况,同时使用 NI 9234 声振模块和 SDT1-028K 压电薄膜启动了振动。在双面 UV 安装胶带上采用扩大表面胶带覆盖范围的全夹层晶片安装技术可在切割过程中实现出色的晶片夹持,并产生最低的顶部和背面晶片崩裂性能。新颖的双面全夹层晶片安装技术展示了更高的晶片夹持能力,从而降低了切割过程中的振动,并提高了整体切削性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
2024 Index IEEE Transactions on Semiconductor Manufacturing Vol. 37 Front Cover Editorial Table of Contents IEEE Transactions on Semiconductor Manufacturing Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1